BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 36402790)

  • 1. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties.
    Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG
    J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymers for Melt Electrowriting.
    Kade JC; Dalton PD
    Adv Healthc Mater; 2021 Jan; 10(1):e2001232. PubMed ID: 32940962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Mesenchymal Stem Cell Behavior.
    Yoshida M; Turner PR; Ali MA; Cabral JD
    ACS Appl Bio Mater; 2021 Feb; 4(2):1319-1329. PubMed ID: 35014483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt electrowriting reinforced composite membrane for controlled drug release.
    Xu T; Gu J; Meng J; Du L; Kumar A; Xu H
    J Mech Behav Biomed Mater; 2022 Aug; 132():105277. PubMed ID: 35617819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of Melt Electrowritten PCL Scaffolds Following Melt Processing and Plasma Surface Treatment.
    Paxton NC; Ho SWK; Tuten BT; Lipton-Duffin J; Woodruff MA
    Macromol Rapid Commun; 2021 Dec; 42(23):e2100433. PubMed ID: 34668263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
    Turner PR; Yoshida M; Ali MA; Cabral JD
    Tissue Eng Part C Methods; 2020 Oct; 26(10):519-527. PubMed ID: 32977739
    [No Abstract]   [Full Text] [Related]  

  • 10. Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration.
    Hewitt E; Mros S; McConnell M; Cabral JD; Ali A
    Biomed Mater; 2019 Aug; 14(5):055013. PubMed ID: 31318339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Fused Deposition Modeling and Melt Electrowriting for Engineering Branched Vasculature.
    Thorsnes QS; Turner PR; Ali MA; Cabral JD
    Biomedicines; 2023 Nov; 11(12):. PubMed ID: 38137359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium-Substituted Bioactive Glass/Polycaprolactone Microfibers.
    Paxton NC; Ren J; Ainsworth MJ; Solanki AK; Jones JR; Allenby MC; Stevens MM; Woodruff MA
    Macromol Rapid Commun; 2019 Jun; 40(11):e1900019. PubMed ID: 30932256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the potential of melt electrowriting in regenerative dental medicine.
    Daghrery A; de Souza Araújo IJ; Castilho M; Malda J; Bottino MC
    Acta Biomater; 2023 Jan; 156():88-109. PubMed ID: 35026478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects.
    Eichholz KF; Freeman FE; Pitacco P; Nulty J; Ahern D; Burdis R; Browe DC; Garcia O; Hoey DA; Kelly DJ
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35947963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting.
    Chung JHY; Sayyar S; Wallace GG
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric control of fiber morphology and tensile mechanics in scaffolds with high aspect ratio geometry produced via melt electrowriting for musculoskeletal soft tissue engineering.
    Warren PB; Davis ZG; Fisher MB
    J Mech Behav Biomed Mater; 2019 Nov; 99():153-160. PubMed ID: 31352215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of pore size within fibrous scaffolds fabricated using melt electrowriting on human bone marrow stem cell osteogenesis.
    Brennan CM; Eichholz KF; Hoey DA
    Biomed Mater; 2019 Nov; 14(6):065016. PubMed ID: 31574493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melt Electrowriting of Thermoplastic Elastomers.
    Hochleitner G; Fürsattel E; Giesa R; Groll J; Schmidt HW; Dalton PD
    Macromol Rapid Commun; 2018 May; 39(10):e1800055. PubMed ID: 29656556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the bioactivity of melt electrowritten PLLA scaffold by convenient, green, and effective hydrophilic surface modification.
    Meng J; Boschetto F; Yagi S; Marin E; Adachi T; Chen X; Pezzotti G; Sakurai S; Sasaki S; Aoki T; Yamane H; Xu H
    Mater Sci Eng C Mater Biol Appl; 2022 Apr; 135():112686. PubMed ID: 35581096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering.
    Pant S; Thomas S; Loganathan S; Valapa RB
    Int J Biol Macromol; 2022 Sep; 217():979-997. PubMed ID: 35908677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.