These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 36402813)

  • 1. Model experiments on hydraulic properties around multiple piers with reproduced 3D geometries.
    Sato H
    Sci Rep; 2022 Nov; 12(1):19938. PubMed ID: 36402813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier.
    Jahangirzadeh A; Basser H; Akib S; Karami H; Naji S; Shamshirband S
    PLoS One; 2014; 9(2):e98592. PubMed ID: 24919065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the reduction of sediment deposition and river flow resistance around dimpled surface piers.
    Zhang Y; Wang J; Zhou Q; Li H; Tang W
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52784-52803. PubMed ID: 36843162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques.
    Zheng S; Xu YJ; Cheng H; Wang B; Lu X
    Environ Monit Assess; 2017 Dec; 190(1):15. PubMed ID: 29234976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostication of scour around twin and three piers using efficient outlier robust extreme learning machine.
    Nou MRG; Foroudi A; Latif SD; Parsaie A
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74526-74539. PubMed ID: 35639314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Artificial Intelligence of Things Sensing System of Real-Time Bridge Scour Monitoring for Early Warning during Floods.
    Lin YB; Lee FZ; Chang KC; Lai JS; Lo SW; Wu JH; Lin TK
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condition Monitoring of Railway Bridges Using Vehicle Pitch to Detect Scour.
    McGeown C; Hester D; OBrien EJ; Kim CW; Fitzgerald P; Pakrashi V
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration.
    Levy J; Birck MD; Mutiti S; Kilroy KC; Windeler B; Idris O; Allen LN
    J Environ Manage; 2011 Aug; 92(8):1960-71. PubMed ID: 21492996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromagnetic Sensors for Underwater Scour Monitoring.
    Maroni A; Tubaldi E; Ferguson N; Tarantino A; McDonald H; Zonta D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32717822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A practical method to assess risks from large wood debris accumulations at bridge piers.
    Panici D; Kripakaran P; Djordjević S; Dentith K
    Sci Total Environ; 2020 Aug; 728():138575. PubMed ID: 32344221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device.
    Fitzgerald PC; Malekjafarian A; Bhowmik B; Prendergast LJ; Cahill P; Kim CW; Hazra B; Pakrashi V; OBrien EJ
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of maximum scour depth at clear water conditions: Multivariate and robust comparative analysis between empirical equations and machine learning approaches using extensive reference metadata.
    Nandi B; Patel G; Das S
    J Environ Manage; 2024 Mar; 354():120349. PubMed ID: 38401497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Investigation of the Performance of Segmental CFST Piers with External Energy Dissipators under Lateral Cyclic Loadings.
    Wang C; Qu Z; Shen Y; Jiang J; Yin C; Zong Y
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-Dependent Seismic Reliability of Coastal Bridge Piers Subjected to Nonuniform Corrosion.
    Yuan W; Wu X; Wang Y; Liu Z; Zhou P
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instrumentation design for bridge scour monitoring using fiber Bragg grating sensors.
    Xiong W; Cai CS; Kong X
    Appl Opt; 2012 Feb; 51(5):547-57. PubMed ID: 22330286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and Numerical Study of Static Behavior of Precast Segmental Hollow Bridge Piers.
    Lu W; Peng WQ; Zhu L; Gao C; Tang YD; Zhou YW; Su W; Zeng B
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of bridge natural frequency as an indicator of scour using centrifuge modelling.
    Kariyawasam KD; Middleton CR; Madabhushi G; Haigh SK; Talbot JP
    J Civ Struct Health Monit; 2020; 10(5):861-881. PubMed ID: 33442503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physics-based and machine-learning models for accurate scour depth prediction.
    Jatoliya A; Bhattacharya D; Manna B; Bento AM; Fazeres Ferradosa T
    Philos Trans A Math Phys Eng Sci; 2024 Jan; 382(2264):20220403. PubMed ID: 37980929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Corroded Surface Morphology on Ultra-Low Cycle Fatigue of Steel Bridge Piers.
    Song F; Zhang T; Xie X
    Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33535540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Fishing Piers in Brown Pelican (
    Thomas FL; Forys EA
    Animals (Basel); 2022 Sep; 12(18):. PubMed ID: 36139212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.