These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36403026)

  • 1. Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis.
    Camacho-Toledano C; Machín-Díaz I; Calahorra L; Cabañas-Cotillas M; Otaegui D; Castillo-Triviño T; Villar LM; Costa-Frossard L; Comabella M; Midaglia L; García-Domínguez JM; García-Arocha J; Ortega MC; Clemente D
    J Neuroinflammation; 2022 Nov; 19(1):277. PubMed ID: 36403026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central and peripheral myeloid-derived suppressor cell-like cells are closely related to the clinical severity of multiple sclerosis.
    Ortega MC; Lebrón-Galán R; Machín-Díaz I; Naughton M; Pérez-Molina I; García-Arocha J; Garcia-Dominguez JM; Goicoechea-Briceño H; Vila-Del Sol V; Quintanero-Casero V; García-Montero R; Galán V; Calahorra L; Camacho-Toledano C; Martínez-Ginés ML; Fitzgerald DC; Clemente D
    Acta Neuropathol; 2023 Aug; 146(2):263-282. PubMed ID: 37243699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis.
    Melero-Jerez C; Alonso-Gómez A; Moñivas E; Lebrón-Galán R; Machín-Díaz I; de Castro F; Clemente D
    Neurobiol Dis; 2020 Jul; 140():104869. PubMed ID: 32278882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model.
    Jiang Q; Duan J; Van Kaer L; Yang G
    Aging Dis; 2024 May; 15(3):1329-1343. PubMed ID: 37307825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Cantoni C; Cignarella F; Ghezzi L; Mikesell B; Bollman B; Berrien-Elliott MM; Ireland AR; Fehniger TA; Wu GF; Piccio L
    Acta Neuropathol; 2017 Jan; 133(1):61-77. PubMed ID: 27704281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myeloid-derived suppressor cells prevent disruption of the gut barrier, preserve microbiota composition, and potentiate immunoregulatory pathways in a rat model of experimental autoimmune encephalomyelitis.
    Radojević D; Bekić M; Gruden-Movsesijan A; Ilić N; Dinić M; Bisenić A; Golić N; Vučević D; Đokić J; Tomić S
    Gut Microbes; 2022; 14(1):2127455. PubMed ID: 36184742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis.
    Bail K; Notz Q; Rovituso DM; Schampel A; Wunsch M; Koeniger T; Schropp V; Bharti R; Scholz CJ; Foerstner KU; Kleinschnitz C; Kuerten S
    J Neuroinflammation; 2017 Jul; 14(1):148. PubMed ID: 28738885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cannabidiol Attenuates Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Through Induction of Myeloid-Derived Suppressor Cells.
    Elliott DM; Singh N; Nagarkatti M; Nagarkatti PS
    Front Immunol; 2018; 9():1782. PubMed ID: 30123217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudolycorine chloride ameliorates Th17 cell-mediated central nervous system autoimmunity by restraining myeloid-derived suppressor cell expansion.
    Zhang G; Zhu X; Yang F; Li J; Leng X; Mo C; Li L; Wang Y
    Pharm Biol; 2022 Dec; 60(1):899-908. PubMed ID: 36082828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting therapeutic response to fingolimod treatment in multiple sclerosis patients.
    Quirant-Sánchez B; Hervás-García JV; Teniente-Serra A; Brieva L; Moral-Torres E; Cano A; Munteis E; Mansilla MJ; Presas-Rodriguez S; Navarro-Barriuso J; Ramo-Tello C; Martínez-Cáceres EM
    CNS Neurosci Ther; 2018 Dec; 24(12):1175-1184. PubMed ID: 29656444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fingolimod ameliorates the development of experimental autoimmune encephalomyelitis by inhibiting Akt-mTOR axis in mice.
    Hou H; Cao R; Miao J; Sun Y; Liu X; Song X; Guo L
    Int Immunopharmacol; 2016 Jan; 30():171-178. PubMed ID: 26632437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis.
    Rossi S; Lo Giudice T; De Chiara V; Musella A; Studer V; Motta C; Bernardi G; Martino G; Furlan R; Martorana A; Centonze D
    Br J Pharmacol; 2012 Feb; 165(4):861-9. PubMed ID: 21740406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene oxide films as a novel tool for the modulation of myeloid-derived suppressor cell activity in the context of multiple sclerosis.
    Camacho-Toledano C; Machín-Díaz I; Lebrón-Galán R; González-Mayorga A; Palomares FJ; Serrano MC; Clemente D
    Nanoscale; 2024 Apr; 16(15):7515-7531. PubMed ID: 38498071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis.
    Chun J; Hartung HP
    Clin Neuropharmacol; 2010; 33(2):91-101. PubMed ID: 20061941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon-β treatment in a murine model of multiple sclerosis.
    Melero-Jerez C; Suardíaz M; Lebrón-Galán R; Marín-Bañasco C; Oliver-Martos B; Machín-Díaz I; Fernández Ó; de Castro F; Clemente D
    Neurobiol Dis; 2019 Jul; 127():13-31. PubMed ID: 30798007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD+ attenuates experimental autoimmune encephalomyelitis through induction of CD11b+ gr-1+ myeloid-derived suppressor cells.
    Wang JL; Li B; Tan GJ; Gai XL; Xing JN; Wang JQ; Quan MY; Zhang N; Guo L
    Biosci Rep; 2020 Apr; 40(4):. PubMed ID: 32301489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingolimod treatment promotes proliferation and differentiation of oligodendrocyte progenitor cells in mice with experimental autoimmune encephalomyelitis.
    Zhang J; Zhang ZG; Li Y; Ding X; Shang X; Lu M; Elias SB; Chopp M
    Neurobiol Dis; 2015 Apr; 76():57-66. PubMed ID: 25680941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis.
    Bonfiglio T; Olivero G; Merega E; Di Prisco S; Padolecchia C; Grilli M; Milanese M; Di Cesare Mannelli L; Ghelardini C; Bonanno G; Marchi M; Pittaluga A
    PLoS One; 2017; 12(1):e0170825. PubMed ID: 28125677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation.
    Melero-Jerez C; Fernández-Gómez B; Lebrón-Galán R; Ortega MC; Sánchez-de Lara I; Ojalvo AC; Clemente D; de Castro F
    Glia; 2021 Apr; 69(4):905-924. PubMed ID: 33217041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial Effects of the Calcium Channel Blocker CTK 01512-2 in a Mouse Model of Multiple Sclerosis.
    Silva RBM; Greggio S; Venturin GT; da Costa JC; Gomez MV; Campos MM
    Mol Neurobiol; 2018 Dec; 55(12):9307-9327. PubMed ID: 29667130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.