BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36403541)

  • 1. Sulfication-induced non-radiative electron-hole recombination dynamics in graphene quantum dots for tuning photocatalytic performance.
    Cui P; Xue Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 1):122117. PubMed ID: 36403541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Edge carboxylation-induced charge separation dynamics of graphene quantum dot/cellulose nanocomposites.
    Cui P; Xue Y
    Carbohydr Polym; 2023 Jan; 299():120190. PubMed ID: 36876805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms.
    Feng J; Dong H; Pang B; Shao F; Zhang C; Yu L; Dong L
    Phys Chem Chem Phys; 2018 Jun; 20(22):15244-15252. PubMed ID: 29789854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring optical and photocatalytic properties of sulfur-doped boron nitride quantum dots via ligand functionalization.
    Cui P; Wu Q
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38334144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory investigation of photoelectric conversion in graphene quantum dot/Ir(III) complex nanocomposites: the influence of π-conjugation in cyclometalating ligands.
    Cui P; Wu Q
    Photochem Photobiol Sci; 2023 Nov; 22(11):2621-2634. PubMed ID: 37718379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence.
    Qin X; Zhan Z; Zhang R; Chu K; Whitworth Z; Ding Z
    Nanoscale; 2023 Feb; 15(8):3864-3871. PubMed ID: 36723371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts.
    Qu D; Zheng M; Du P; Zhou Y; Zhang L; Li D; Tan H; Zhao Z; Xie Z; Sun Z
    Nanoscale; 2013 Dec; 5(24):12272-7. PubMed ID: 24150696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance enhancement of catechin-graphene quantum dot nanocomposites functionalized with carboxyl and doped/decorated with boron towards dye-sensitized solar cell applications: DFT and TD-DFT calculations.
    Alsmani N; Al-Qurashi OS; Wazzan N
    J Mol Graph Model; 2023 Jun; 121():108427. PubMed ID: 36801586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Emission Energy of Chemically Doped Graphene Quantum Dots.
    Noor-Ul-Ain ; Eriksson MO; Schmidt S; Asghar M; Lin PC; Holtz PO; Syväjärvi M; Yazdi GR
    Nanomaterials (Basel); 2016 Nov; 6(11):. PubMed ID: 28335326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Quantum Dots Decorated Al-doped ZnS for Improved Photoelectric Performance.
    Zhang Z; Lei Y; Zhao L; Jiang Z; Ouyang Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30115867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High fluorescent sulfur regulating graphene quantum dots with tunable photoluminescence properties.
    Luo Y; Li M; Sun L; Xu Y; Li M; Hu G; Tang T; Wen J; Li X; Zhang J; Wang L
    J Colloid Interface Sci; 2018 Nov; 529():205-213. PubMed ID: 29894939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development.
    Gupta S; Smith T; Banaszak A; Boeckl J
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28961225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.
    Jin SH; Kim DH; Jun GH; Hong SH; Jeon S
    ACS Nano; 2013 Feb; 7(2):1239-45. PubMed ID: 23272894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harnessing synergistic effects in GQD@Pt(II) nanocomposites for enhanced photovoltaic performance: a computational study.
    Cui P; Wu Q; Li Z
    J Mol Model; 2024 Jun; 30(7):222. PubMed ID: 38907083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Understanding of Charge-Transfer-Mediated Fe
    Das R; Sugimoto H; Fujii M; Giri PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4755-4768. PubMed ID: 31914727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the charge transfer and electron-hole asymmetry in graphene-graphene quantum dot heterostructure.
    Roy R; Holec D; Kratzer M; Muenzer P; Kaushik P; Michal L; Kumar GS; Zajíčková L; Teichert C
    Nanotechnology; 2022 May; 33(32):. PubMed ID: 35504253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of electrostatic potential polarization in the translocation of graphene quantum dots across membranes.
    Tang X; Zhang S; Zhou H; Zhou B; Liu S; Yang Z
    Nanoscale; 2020 Jan; 12(4):2732-2739. PubMed ID: 31951244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in preparation, mechanism and applications of graphene quantum dots/semiconductor composite photocatalysts: A review.
    Cheng C; Liang Q; Yan M; Liu Z; He Q; Wu T; Luo S; Pan Y; Zhao C; Liu Y
    J Hazard Mater; 2022 Feb; 424(Pt D):127721. PubMed ID: 34865907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene quantum dot and iron co-doped TiO
    Khan MS; Riaz N; Shaikh AJ; Shah JA; Hussain J; Irshad M; Awan MS; Syed A; Kallerhoff J; Arshad M; Bilal M
    Ecotoxicol Environ Saf; 2021 Dec; 226():112855. PubMed ID: 34628153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On using non-Kekulé triangular graphene quantum dots for scavenging hazardous sulfur hexafluoride components.
    Roondhe V; Roondhe B; Saxena S; Ahuja R; Shukla A
    Heliyon; 2023 Apr; 9(4):e15388. PubMed ID: 37123910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.