These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36403541)

  • 21. Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO
    Yan Y; Chen J; Li N; Tian J; Li K; Jiang J; Liu J; Tian Q; Chen P
    ACS Nano; 2018 Apr; 12(4):3523-3532. PubMed ID: 29547255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. S, N Co-Doped Graphene Quantum Dot/TiO
    Xie H; Hou C; Wang H; Zhang Q; Li Y
    Nanoscale Res Lett; 2017 Dec; 12(1):400. PubMed ID: 28610393
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Graphene Quantum Dot Edge Morphologies on Their Optical Properties.
    Khan SN; Weight BM; Gifford BJ; Tretiak S; Bishop A
    J Phys Chem Lett; 2022 Jun; 13(25):5801-5807. PubMed ID: 35726899
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From Pristine to Heteroatom-Doped Graphene Quantum Dots: An Essential Review and Prospects for Future Research.
    Im MJ; Kim JI; Hyeong SK; Moon BJ; Bae S
    Small; 2023 Nov; 19(47):e2304497. PubMed ID: 37496316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfur and phosphorus co-doped graphene quantum dots for fluorescent monitoring of nitrite in pickles.
    Wang W; Xu S; Li N; Huang Z; Su B; Chen X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117211. PubMed ID: 31158765
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of sulfur doping on fluorescence and quantum yield of graphene quantum dots: an experimental and theoretical investigation.
    Kadian S; Manik G; Ashish K; Singh M; Chauhan RP
    Nanotechnology; 2019 Oct; 30(43):435704. PubMed ID: 31342919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of Plasmonic Ag and Nitrogen-Doped Graphene Quantum Dots Codecorated Ultrathin Graphitic Carbon Nitride Nanosheet Composites with Enhanced Photocatalytic Activity: Full-Spectrum Response Ability and Mechanism Insight.
    Deng Y; Tang L; Feng C; Zeng G; Wang J; Lu Y; Liu Y; Yu J; Chen S; Zhou Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):42816-42828. PubMed ID: 29171258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment.
    Kaur M; Kaur M; Sharma VK
    Adv Colloid Interface Sci; 2018 Sep; 259():44-64. PubMed ID: 30032930
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Edge Modification and Site-Selective Functionalization of Graphene Quantum Dots: A Versatile Technique for Designing Tunable Optoelectronic and Sensing Devices.
    Basak T; Basak T
    J Phys Chem A; 2023 Jun; 127(25):5335-5343. PubMed ID: 37334570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chiral Graphene Quantum Dots.
    Suzuki N; Wang Y; Elvati P; Qu ZB; Kim K; Jiang S; Baumeister E; Lee J; Yeom B; Bahng JH; Lee J; Violi A; Kotov NA
    ACS Nano; 2016 Feb; 10(2):1744-55. PubMed ID: 26743467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots.
    Qu D; Zheng M; Zhang L; Zhao H; Xie Z; Jing X; Haddad RE; Fan H; Sun Z
    Sci Rep; 2014 Jun; 4():5294. PubMed ID: 24938871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical Investigations of Optical Origins of Fluorescent Graphene Quantum Dots.
    Wang J; Cao S; Ding Y; Ma F; Lu W; Sun M
    Sci Rep; 2016 Apr; 6():24850. PubMed ID: 27094439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep-Eutectic-Solvent-Assisted Synthesis of a Z-Scheme BiVO
    Ren H; Lv K; Liu W; Li P; Zhang Y; Lv Y
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian.
    Wang G; Guo Q; Chen D; Liu Z; Zheng X; Xu A; Yang S; Ding G
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5750-5759. PubMed ID: 29350521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interband Absorption in Few-Layer Graphene Quantum Dots: Effect of Heavy Metals.
    Shtepliuk I; Yakimova R
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30012974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene Quantum Dot-TiO
    Apostolaki MA; Toumazatou A; Antoniadou M; Sakellis E; Xenogiannopoulou E; Gardelis S; Boukos N; Falaras P; Dimoulas A; Likodimos V
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33371303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering of graphene quantum dots by varying the properties of graphene oxide for fluorescence detection of picric acid.
    Mukherjee D; Das P; Kundu S; Mandal B
    Chemosphere; 2022 Aug; 300():134432. PubMed ID: 35398072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. White-light-emitting edge-functionalized graphene quantum dots.
    Sekiya R; Uemura Y; Murakami H; Haino T
    Angew Chem Int Ed Engl; 2014 May; 53(22):5619-23. PubMed ID: 24711343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulphur doping: a facile approach to tune the electronic structure and optical properties of graphene quantum dots.
    Li X; Lau SP; Tang L; Ji R; Yang P
    Nanoscale; 2014 May; 6(10):5323-8. PubMed ID: 24699893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revealing the role of nitrogen dopants in tuning the electronic and optical properties of graphene quantum dots
    Yang M; Lian Z; Si C; Li B
    Phys Chem Chem Phys; 2020 Dec; 22(48):28230-28237. PubMed ID: 33295343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.