BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 36403719)

  • 21. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases.
    Roskoski R
    Pharmacol Res; 2016 Sep; 111():784-803. PubMed ID: 27473820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders.
    Roskoski R
    Pharmacol Res; 2018 Mar; 129():65-83. PubMed ID: 29408302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting ERK1/2 protein-serine/threonine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2019 Apr; 142():151-168. PubMed ID: 30794926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First Approval of Pacritinib as a Selective Janus Associated Kinase-2 Inhibitor for the Treatment of Patients with Myelofibrosis.
    De SK
    Anticancer Agents Med Chem; 2023; 23(12):1355-1360. PubMed ID: 36959157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting oncogenic Raf protein-serine/threonine kinases in human cancers.
    Roskoski R
    Pharmacol Res; 2018 Sep; 135():239-258. PubMed ID: 30118796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of fibroblast growth factor receptor (FGFR) protein-tyrosine kinase inhibitors in the treatment of cancers including those of the urinary bladder.
    Roskoski R
    Pharmacol Res; 2020 Jan; 151():104567. PubMed ID: 31770593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of small molecule Kit protein-tyrosine kinase inhibitors in the treatment of neoplastic disorders.
    Roskoski R
    Pharmacol Res; 2018 Jul; 133():35-52. PubMed ID: 29704617
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of RET protein-tyrosine kinase inhibitors in the treatment RET-driven thyroid and lung cancers.
    Roskoski R; Sadeghi-Nejad A
    Pharmacol Res; 2018 Feb; 128():1-17. PubMed ID: 29284153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen.
    Cheung L; Yu DM; Neiron Z; Failes TW; Arndt GM; Fletcher JI
    Biochem Pharmacol; 2015 Feb; 93(3):380-8. PubMed ID: 25462817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Janus Kinase and Tyrosine Kinase Inhibitors in Dermatology: A Review of Their Utilization, Safety Profile and Future Applications.
    Shalabi MMK; Garcia B; Coleman K; Siller A; Miller AC; Tyring SK
    Skin Therapy Lett; 2022 Jan; 27(1):4-9. PubMed ID: 35081305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FMS-like tyrosine kinase 3 (FLT3) inhibitors: Molecular docking and experimental studies.
    Mashkani B; Tanipour MH; Saadatmandzadeh M; Ashman LK; Griffith R
    Eur J Pharmacol; 2016 Apr; 776():156-66. PubMed ID: 26896780
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by kinase inhibitors: Effects of dabrafenib, ibrutinib, nintedanib, trametinib and BIBF 1202.
    Korprasertthaworn P; Chau N; Nair PC; Rowland A; Miners JO
    Biochem Pharmacol; 2019 Nov; 169():113616. PubMed ID: 31445021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.
    Roskoski R
    Pharmacol Res; 2016 Jan; 103():26-48. PubMed ID: 26529477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New frontiers against sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive biomarkers.
    He Y; Luo Y; Huang L; Zhang D; Wang X; Ji J; Liang S
    Pharmacol Res; 2021 Aug; 170():105732. PubMed ID: 34139345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Apr; 94():9-25. PubMed ID: 25662515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative efficacy and safety of abrocitinib, baricitinib, and upadacitinib for moderate-to-severe atopic dermatitis: A network meta-analysis.
    Wan H; Jia H; Xia T; Zhang D
    Dermatol Ther; 2022 Sep; 35(9):e15636. PubMed ID: 35703351
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ibrutinib inhibition of Bruton protein-tyrosine kinase (BTK) in the treatment of B cell neoplasms.
    Roskoski R
    Pharmacol Res; 2016 Nov; 113(Pt A):395-408. PubMed ID: 27641927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Janus kinase inhibitors for the therapy of atopic dermatitis.
    Traidl S; Freimooser S; Werfel T
    Allergol Select; 2021; 5():293-304. PubMed ID: 34532638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials.
    Toson B; Fortes IS; Roesler R; Andrade SF
    Pharmacol Res; 2022 Sep; 183():106403. PubMed ID: 35987481
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emerging systemic JAK inhibitors in the treatment of atopic dermatitis: a review of abrocitinib, baricitinib, and upadacitinib.
    Nezamololama N; Fieldhouse K; Metzger K; Gooderham M
    Drugs Context; 2020; 9():. PubMed ID: 33240390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.