BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36403883)

  • 1. Engineered organic nanoparticles to combat biofilms.
    Sheng Y; Chen Z; Wu W; Lu Y
    Drug Discov Today; 2023 Feb; 28(2):103455. PubMed ID: 36403883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies.
    Singh A; Amod A; Pandey P; Bose P; Pingali MS; Shivalkar S; Varadwaj PK; Sahoo AK; Samanta SK
    Biomed Mater; 2022 Feb; 17(2):. PubMed ID: 35105823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of biofilm dispersion-based nanoparticles in cutting off reinfection.
    Li X; Lin S; Wang Y; Chen Y; Zhang W; Shu G; Li H; Xu F; Lin J; Peng G; Fu H
    Appl Microbiol Biotechnol; 2024 Jun; 108(1):386. PubMed ID: 38896257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnologies for control of pathogenic microbial biofilms.
    Asare EO; Mun EA; Marsili E; Paunov VN
    J Mater Chem B; 2022 Jul; 10(27):5129-5153. PubMed ID: 35735175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Channels in an Infectious Biofilm Created by Magnetic Nanoparticles Enhanced Bacterial Killing by Antibiotics.
    Quan K; Zhang Z; Chen H; Ren X; Ren Y; Peterson BW; van der Mei HC; Busscher HJ
    Small; 2019 Sep; 15(39):e1902313. PubMed ID: 31385644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-Biofilm Interactions: The Role of the EPS Matrix.
    Fulaz S; Vitale S; Quinn L; Casey E
    Trends Microbiol; 2019 Nov; 27(11):915-926. PubMed ID: 31420126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix.
    Vitale S; Rampazzo E; Hiebner D; Devlin H; Quinn L; Prodi L; Casey E
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34502-34512. PubMed ID: 35830504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Nanotechnologies to Overcome the Bacterial Biofilm Matrix Barriers.
    Lv X; Wang L; Mei A; Xu Y; Ruan X; Wang W; Shao J; Yang D; Dong X
    Small; 2023 Feb; 19(6):e2206220. PubMed ID: 36470671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Clearing of Wound-Related Pathogenic Bacterial Biofilms Using Protease-Functionalized Antibiotic Nanocarriers.
    Weldrick PJ; Hardman MJ; Paunov VN
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):43902-43919. PubMed ID: 31718141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Polymeric Matrix Composition of
    Abriat C; Gazil O; Heuzey MC; Daigle F; Virgilio N
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35356-35364. PubMed ID: 34286588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Biofilm Eradication Four-Step Strategy: Study of Using Self-Assembled Azithromycin/Rhamnolipid Nanoparticles for Removing
    Dong YT; Li PY; Sun YY; Rao YQ; Yu SH; Hu HY
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):598-604. PubMed ID: 34323037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLGA/xylitol nanoparticles enhance antibiofilm activity
    Anjum A; Chung PY; Ng SF
    RSC Adv; 2019 May; 9(25):14198-14208. PubMed ID: 35519311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced bacterial killing by vancomycin in staphylococcal biofilms disrupted by novel, DMMA-modified carbon dots depends on EPS production.
    Wu Y; van der Mei HC; Busscher HJ; Ren Y
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111114. PubMed ID: 32464355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics
    Quan K; Jiang G; Liu J; Zhang Z; Ren Y; Busscher HJ; van der Mei HC; Peterson BW
    Nanoscale; 2021 Mar; 13(8):4644-4653. PubMed ID: 33616592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amphiphilic Nano-Swords for Direct Penetration and Eradication of Pathogenic Bacterial Biofilms.
    Zhou C; Zhou Y; Zheng Y; Yu Y; Yang K; Chen Z; Chen X; Wen K; Chen Y; Bai S; Song J; Wu T; Lei E; Wan M; Cai Q; Ma L; Wong WL; Bai Y; Zhang C; Feng X
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20458-20473. PubMed ID: 37039625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aluminium oxide nanoparticles inhibit EPS production, adhesion and biofilm formation by multidrug resistant
    Muzammil S; Khurshid M; Nawaz I; Siddique MH; Zubair M; Nisar MA; Imran M; Hayat S
    Biofouling; 2020 Apr; 36(4):492-504. PubMed ID: 32529892
    [No Abstract]   [Full Text] [Related]  

  • 17. Investigation of morphological and biochemical changes of zinc oxide nanoparticles induced toxicity against multi drug resistance bacteria.
    Asif N; Fatima S; Siddiqui T; Fatma T
    J Trace Elem Med Biol; 2022 Dec; 74():127069. PubMed ID: 36152464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug delivery approaches for enhanced antibiofilm therapy.
    Wang T; Cornel EJ; Li C; Du J
    J Control Release; 2023 Jan; 353():350-365. PubMed ID: 36473605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Strategies to Combat Bacterial Biofilms.
    Hemmati F; Rezaee MA; Ebrahimzadeh S; Yousefi L; Nouri R; Kafil HS; Gholizadeh P
    Mol Biotechnol; 2021 Jul; 63(7):569-586. PubMed ID: 33914260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms.
    Forier K; Raemdonck K; De Smedt SC; Demeester J; Coenye T; Braeckmans K
    J Control Release; 2014 Sep; 190():607-23. PubMed ID: 24794896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.