These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36404106)

  • 1. Embedded 3D Printing of Multimaterial Polymer Lattices via Graph-Based Print Path Planning.
    Weeks RD; Truby RL; Uzel SGM; Lewis JA
    Adv Mater; 2023 Feb; 35(5):e2206958. PubMed ID: 36404106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Embedded 3D Printing of Multimaterial Polymer Lattices via Graph-Based Print Path Planning.
    Weeks RD; Truby RL; Uzel SGM; Lewis JA
    Adv Mater; 2023 Jul; 35(30):e2305232. PubMed ID: 37497559
    [No Abstract]   [Full Text] [Related]  

  • 3. Rotational multimaterial printing of filaments with subvoxel control.
    Larson NM; Mueller J; Chortos A; Davidson ZS; Clarke DR; Lewis JA
    Nature; 2023 Jan; 613(7945):682-688. PubMed ID: 36653452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoplastic Matrix Materials for Embedded 3D Printing.
    Grosskopf AK; Truby RL; Kim H; Perazzo A; Lewis JA; Stone HA
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23353-23361. PubMed ID: 29493215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Embedded 3D Printing of Architected Ceramics via Microwave-Activated Polymerization.
    Román-Manso B; Weeks RD; Truby RL; Lewis JA
    Adv Mater; 2023 Apr; 35(15):e2209270. PubMed ID: 36658462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architected Poly(ionic liquid) Composites with Spatially Programmable Mechanical Properties and Mixed Conductivity.
    Oh E; Kane AQ; Truby RL
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10736-10745. PubMed ID: 38354100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials.
    Abou-Ali AM; Lee DW; Abu Al-Rub RK
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.
    Mueller J; Raney JR; Shea K; Lewis JA
    Adv Mater; 2018 Mar; 30(12):e1705001. PubMed ID: 29359825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid Crystal Elastomer Lattices with Thermally Programmable Deformation via Multi-Material 3D Printing.
    Kotikian A; Watkins AA; Bordiga G; Spielberg A; Davidson ZS; Bertoldi K; Lewis JA
    Adv Mater; 2024 Jan; ():e2310743. PubMed ID: 38189562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voxelated soft matter via multimaterial multinozzle 3D printing.
    Skylar-Scott MA; Mueller J; Visser CW; Lewis JA
    Nature; 2019 Nov; 575(7782):330-335. PubMed ID: 31723289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D printing for the integration of porous materials into miniaturised fluidic devices: A review.
    Balakrishnan HK; Doeven EH; Merenda A; Dumée LF; Guijt RM
    Anal Chim Acta; 2021 Nov; 1185():338796. PubMed ID: 34711329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-shifting structured lattices via multimaterial 4D printing.
    Boley JW; van Rees WM; Lissandrello C; Horenstein MN; Truby RL; Kotikian A; Lewis JA; Mahadevan L
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20856-20862. PubMed ID: 31578256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring mechanical properties in 3D printed multimaterial architected structures.
    Mehrpouya M; Ghalayaniesfahani A; Postmes JF; Gibson I
    J Mech Behav Biomed Mater; 2024 Apr; 152():106431. PubMed ID: 38290391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing.
    Peng X; Wu S; Sun X; Yue L; Montgomery SM; Demoly F; Zhou K; Zhao RR; Qi HJ
    Adv Mater; 2022 Sep; 34(39):e2204890. PubMed ID: 35962737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed multimaterial assembly by synergized 3D printing and freeform laser induction.
    Zheng B; Xie Y; Xu S; Meng AC; Wang S; Wu Y; Yang S; Wan C; Huang G; Tour JM; Lin J
    Nat Commun; 2024 May; 15(1):4541. PubMed ID: 38806541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks.
    Yuk H; Zhao X
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29239049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 'print-pause-print' protocol for 3D printing microfluidics using multimaterial stereolithography.
    Kim YT; Ahmadianyazdi A; Folch A
    Nat Protoc; 2023 Apr; 18(4):1243-1259. PubMed ID: 36609643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.