BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36404111)

  • 1. Electrochemical Reconstruction of NiFe/NiFeOOH Superparamagnetic Core/Catalytic Shell Heterostructure for Magnetic Heating Enhancement of Oxygen Evolution Reaction.
    Peng D; Hu C; Luo X; Huang J; Ding Y; Zhou W; Zhou H; Yang Y; Yu T; Lei W; Yuan C
    Small; 2023 Jan; 19(3):e2205665. PubMed ID: 36404111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Reconstructed RuO
    Chang G; Zhou Y; Wang J; Zhang H; Yan P; Wu HB; Yu XY
    Small; 2023 Apr; 19(16):e2206768. PubMed ID: 36683212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Core-Shell Structured NiFeSn@NiFe (Oxy)Hydroxide Nanospheres from an Electrochemical Strategy for Electrocatalytic Oxygen Evolution Reaction.
    Chen M; Lu S; Fu XZ; Luo JL
    Adv Sci (Weinh); 2020 May; 7(10):1903777. PubMed ID: 32440488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Heating Amorphous NiFe Hydroxide Nanosheets Encapsulated Ni Nanoparticles@Wood Carbon to Boost Oxygen Evolution Reaction Activity.
    Wang Y; Fan X; Du Q; Shang Y; Li X; Cao Z; Wang X; Li J; Xie Y; Gan W
    Small; 2023 Jun; 19(26):e2206798. PubMed ID: 37010010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Self-Reconstruction via Flexible Components in Layered Double Hydroxides for Superior-Evolving Performance.
    Liu J; Ding P; Zhu Z; Du W; Xu X; Hu J; Zhou Y; Zeng H
    Small; 2021 Sep; 17(38):e2101671. PubMed ID: 34342939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core-Shell Co
    Guo X; Hu X; Wu D; Jing C; Liu W; Ren Z; Zhao Q; Jiang X; Xu C; Zhang Y; Hu N
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21506-21514. PubMed ID: 31124648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NiFe
    Wu Z; Zou Z; Huang J; Gao F
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26283-26292. PubMed ID: 30009602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Bimetallic NiFe-Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highly-Efficient Oxygen Evolution Reaction.
    Liu C; Han Y; Yao L; Liang L; He J; Hao Q; Zhang J; Li Y; Liu H
    Small; 2021 Feb; 17(7):e2007334. PubMed ID: 33501753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amorphous-Amorphous Coupling Enhancing the Oxygen Evolution Reaction Activity and Stability of the NiFe-Based Catalyst.
    Gao H; Sun W; Tian X; Liao J; Ma C; Hu Y; Du G; Yang J; Ge C
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15205-15213. PubMed ID: 35343674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MOF-Derived CoSe
    Tang Y; Li J; Lu Z; Wang Y; Tao K; Lin Y
    Nanomaterials (Basel); 2023 Sep; 13(19):. PubMed ID: 37836262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced OER Performances of Au@NiCo
    Lv Y; Duan S; Zhu Y; Yin P; Wang AR
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction.
    Ni Y; Yao L; Wang Y; Liu B; Cao M; Hu C
    Nanoscale; 2017 Aug; 9(32):11596-11604. PubMed ID: 28770917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Fluorination Engineering of NiFe Prussian Blue Analogue Derivatives for Highly Efficient Oxygen Evolution Reaction.
    Ma F; Wu Q; Liu M; Zheng L; Tong F; Wang Z; Wang P; Liu Y; Cheng H; Dai Y; Zheng Z; Fan Y; Huang B
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5142-5152. PubMed ID: 33480252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn-Leaching Induced Rapid Self-Reconstruction of NiFe-Layered Double Hydroxides for Boosted Oxygen Evolution Reaction.
    Guo H; Zhang L; Ou D; Liu Q; Wu Z; Yang W; Fang Z; Shi Q
    Small; 2024 Mar; 20(12):e2307069. PubMed ID: 37964340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. External Fields Assisted Highly Efficient Oxygen Evolution Reaction of Confined 1T-VSe
    Chen M; Zhou W; Ye K; Yuan C; Zhu M; Yu H; Yang H; Huang H; Wu Y; Zhang J; Zheng X; Shen J; Wang X; Wang S
    Small; 2023 Sep; 19(38):e2300122. PubMed ID: 37144423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-valence chromium accelerated interface electron transfer for water oxidation.
    Kong S; Lu M; Yan S; Zou Z
    Dalton Trans; 2022 Nov; 51(44):16890-16897. PubMed ID: 36305271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-Redistributed NiCo@NiFe-LDH Core-Shell Heterostructure for Significantly Enhancing Electrochemical Water Splitting.
    Chen H; Li J; Chen L; Li G; Zhao W; Tao K; Han L
    Inorg Chem; 2023 Dec; 62(49):20194-20201. PubMed ID: 37988673
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Yang Y; Zhu B; Guo PF; Ding TY; Yang QN; Feng WX; Jia Y; Wang K; Wang WT; He ZH; Liu ZT
    Inorg Chem; 2022 Oct; 61(42):16805-16813. PubMed ID: 36223409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NiFe codoping-regulated amorphous/crystalline heterostructured Co-based hydroxides/tungstate with rich oxygen vacancies for efficient water oxidation catalysis.
    Feng J; Chu C; Liu J; Wei L; Li H; Shen J
    J Colloid Interface Sci; 2024 Apr; 659():330-338. PubMed ID: 38176242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterostructure of core-shell IrCo@IrCoO
    Ma X; Deng L; Lu M; He Y; Zou S; Xin Y
    Nanotechnology; 2021 Dec; 33(12):. PubMed ID: 34874299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.