These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36404275)

  • 1. High Power- and Energy-Density Supercapacitors through the Chlorine Respiration Mechanism.
    Fan X; Huang K; Chen L; You H; Yao M; Jiang H; Zhang L; Lian C; Gao X; Li C
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202215342. PubMed ID: 36404275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor.
    Chen S; Yang G; Zhao X; Wang N; Luo T; Chen X; Wu T; Jiang S; van Aken PA; Qu S; Li T; Du L; Zhang J; Wang H; Wang H
    Front Chem; 2020; 8():663. PubMed ID: 33195003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards High-Performance Zinc-Based Hybrid Supercapacitors via Macropores-Based Charge Storage in Organic Electrolytes.
    Qiu X; Wang N; Wang Z; Wang F; Wang Y
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9610-9617. PubMed ID: 33599370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors.
    Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS
    ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag-modified Fe
    Guan Y; Ji P; Wan J; Zhang D; Wang Z; Tian H; Hu C; Hu B; Tang Q; Xi Y
    Nanotechnology; 2020 Mar; 31(12):125405. PubMed ID: 31751972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating Desalination and Energy Storage using a Saltwater-based Hybrid Sodium-ion Supercapacitor.
    Guo Z; Ma Y; Dong X; Hou M; Wang Y; Xia Y
    ChemSusChem; 2018 Jun; 11(11):1741-1745. PubMed ID: 29656502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iso-Oriented NaTi
    Wei T; Yang G; Wang C
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31861-31870. PubMed ID: 28840719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.
    Owusu KA; Qu L; Li J; Wang Z; Zhao K; Yang C; Hercule KM; Lin C; Shi C; Wei Q; Zhou L; Mai L
    Nat Commun; 2017 Mar; 8():14264. PubMed ID: 28262797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-High Energy Density Hybrid Supercapacitors Using MnO
    Rani JR; Thangavel R; Kim M; Lee YS; Jang JH
    Nanomaterials (Basel); 2020 Oct; 10(10):. PubMed ID: 33081310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of capacitive performance of polyaniline based hybrid supercapacitor.
    Rahman MM; Joy PM; Uddin MN; Mukhlish MZB; Khan MMR
    Heliyon; 2021 Jul; 7(7):e07407. PubMed ID: 34286117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D hierarchical porous carbon matching ionic liquid with ultrahigh specific surface area and appropriate porous distribution for supercapacitors.
    Du Q; Zhao Y; Zhuo K; Chen Y; Yang L; Wang C; Wang J
    Nanoscale; 2021 Aug; 13(31):13285-13293. PubMed ID: 34259289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor.
    Yang Y; Shen K; Liu Y; Tan Y; Zhao X; Wu J; Niu X; Ran F
    Nanomicro Lett; 2017; 9(1):6. PubMed ID: 30460303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically Engineered Nanocarbon Florets as Bifunctional Electrode Materials for Adsorptive and Intercalative Energy Storage.
    Jha MK; Babu B; Parker BJ; Surendran V; Cameron NR; Shaijumon MM; Subramaniam C
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42669-42677. PubMed ID: 32842723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability.
    Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J
    ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy storage performance of 2D MoS
    Radhakrishnan S; K A SR; Kumar SR; Johari P; Rout CS
    Nanotechnology; 2021 Apr; 32(15):155403. PubMed ID: 33271528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of needle-like porous CoNi
    Qin W; Li J; Liu X; Zhou N; Wu C; Ding M; Jia C
    J Colloid Interface Sci; 2019 Oct; 554():125-132. PubMed ID: 31288176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous α-Fe₂O₃@C Nanowire Arrays as Flexible Supercapacitors Electrode Materials with Excellent Electrochemical Performances.
    Dong Y; Xing L; Chen K; Wu X
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors.
    Yu M; Liu R; Liu J; Li S; Ma Y
    Small; 2017 Nov; 13(44):. PubMed ID: 28994201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Air-Etching Synthesis of Porous-Carbon Nanotube Aerogels with Ultrafast Charging at 1000 A g
    Zhao W; Zhang H; Liu J; Xu L; Wu H; Zou M; Wang Q; He X; Li Y; Cao A
    Small; 2018 Oct; 14(40):e1802394. PubMed ID: 30303291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.