These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Kinetics of the interactions of the chicken erythrocyte AMP deaminase with anthraquinone compounds. Yoshino M; Kawamura Y Int J Biochem; 1986; 18(3):241-4. PubMed ID: 3956841 [TBL] [Abstract][Full Text] [Related]
6. Calcium activates erythrocyte AMP deaminase [isoform E (AMPD3)] through a protein-protein interaction between calmodulin and the N-terminal domain of the AMPD3 polypeptide. Mahnke DK; Sabina RL Biochemistry; 2005 Apr; 44(14):5551-9. PubMed ID: 15807549 [TBL] [Abstract][Full Text] [Related]
7. [Effect of erythrocyte membranes and tubulin on the activity of NAD-dependent dehydrogenases]. Shcherbatova NA; Nagradova NK; Muronets VI Biokhimiia; 1996 Aug; 61(8):1512-25. PubMed ID: 8962925 [TBL] [Abstract][Full Text] [Related]
8. [AMP-deaminase activity of circulating leukocytes in the human]. Gulian EA; Arutiunian AV Ukr Biokhim Zh (1978); 1986; 58(1):25-9. PubMed ID: 3946016 [TBL] [Abstract][Full Text] [Related]
9. Modulation of glyceraldehyde 3 phosphate dehydrogenase activity and tyr-phosphorylation of Band 3 in human erythrocytes treated with ferriprotoporphyrin IX. Omodeo-Salè F; Cortelezzi L; Riva E; Vanzulli E; Taramelli D Biochem Pharmacol; 2007 Nov; 74(9):1383-9. PubMed ID: 17714694 [TBL] [Abstract][Full Text] [Related]
10. Effect of pH on the kinetic properties of rat skeletal muscle AMP deaminase. Ranieri-Raggi M; Bergamini C; Raggi A Ital J Biochem; 1980; 29(4):238-50. PubMed ID: 7216717 [TBL] [Abstract][Full Text] [Related]
12. Regulation of chicken erythrocyte AMP deaminase by phytic acid. Yoshino M; Kawamura Y; Fujisawa K; Ogasawara N J Biochem; 1976 Aug; 80(2):309-13. PubMed ID: 1002671 [TBL] [Abstract][Full Text] [Related]
13. Effect of pH and KCl on aggregation state and sulphydryl groups reactivity of rat skeletal muscle AMP deaminase. Ranieri-Raggi M; Raggi A Ital J Biochem; 1984; 33(3):155-76. PubMed ID: 6432724 [TBL] [Abstract][Full Text] [Related]
14. AMP deaminase as a cell-age marker in transient erythroblastopenia of childhood and its role in the adenylate economy of erythrocytes. Paglia DE; Valentine WN; Nakatani M; Brockway RA Blood; 1989 Nov; 74(6):2161-5. PubMed ID: 2804355 [TBL] [Abstract][Full Text] [Related]
15. Adenosine monophosphate as a mediator of ATP effects at P1 purinoceptors. Ross FM; Brodie MJ; Stone TW Br J Pharmacol; 1998 Jun; 124(4):818-24. PubMed ID: 9690876 [TBL] [Abstract][Full Text] [Related]
16. Erythrocyte AMP-deaminase: an investigation of the increase in activity during chick maturation. Kruckeberg WC; Marcus N; Lemley S; Chilson OP Comp Biochem Physiol B; 1978; 61(4):559-63. PubMed ID: 318390 [TBL] [Abstract][Full Text] [Related]
17. AMP deaminase from dogfish erythrocytes: purification and some properties. Raffin JP Comp Biochem Physiol B; 1983; 75(3):461-4. PubMed ID: 6883999 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic properties of 5'-AMP deaminase in platelet lysates. Holmsen H; Ostvold AC; Pimentel MA Thromb Haemost; 1977 Jun; 37(3):380-95. PubMed ID: 18810 [No Abstract] [Full Text] [Related]
19. Time-dependent loss of adenosine 5'-monophosphate deaminase activity may explain elevated adenosine 5'-triphosphate levels in senescent erythrocytes. Dale GL; Norenberg SL Blood; 1989 Nov; 74(6):2157-60. PubMed ID: 2804354 [TBL] [Abstract][Full Text] [Related]
20. Regulation of AMP deaminase from chicken erythrocytes. A kinetic study of the allosteric interactions. Yoshino M; Kawamura Y; Ogasawara N J Biochem; 1976 Aug; 80(2):299-308. PubMed ID: 1002670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]