These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36405080)

  • 1. Quantitatively characterizing reflexive responses to pitch perturbations.
    Kearney E; Nieto-Castañón A; Falsini R; Daliri A; Heller Murray ES; Smith DJ; Guenther FH
    Front Hum Neurosci; 2022; 16():929687. PubMed ID: 36405080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simple 3-Parameter Model for Examining Adaptation in Speech and Voice Production.
    Kearney E; Nieto-Castañón A; Weerathunge HR; Falsini R; Daliri A; Abur D; Ballard KJ; Chang SE; Chao SC; Heller Murray ES; Scott TL; Guenther FH
    Front Psychol; 2019; 10():2995. PubMed ID: 32038381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensorimotor control of vocal pitch and formant frequencies in Parkinson's disease.
    Mollaei F; Shiller DM; Baum SR; Gracco VL
    Brain Res; 2016 Sep; 1646():269-277. PubMed ID: 27288701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lightweight, headphones-based system for manipulating auditory feedback in songbirds.
    Hoffmann LA; Kelly CW; Nicholson DA; Sober SJ
    J Vis Exp; 2012 Nov; (69):e50027. PubMed ID: 23222734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bilateral cortical network responds to pitch perturbations in speech feedback.
    Kort NS; Nagarajan SS; Houde JF
    Neuroimage; 2014 Feb; 86():525-35. PubMed ID: 24076223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback.
    Behroozmand R; Sangtian S; Korzyukov O; Larson CR
    Brain Res; 2016 Apr; 1636():1-12. PubMed ID: 26835556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-dependent pitch auditory feedback control in cerebellar ataxia.
    Hilger A; Cole J; Larson C
    Res Sq; 2023 Jul; ():. PubMed ID: 37547022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Involuntary and Volitional Responses to Pitch-Shifted Auditory Feedback: Evidence for Tone Speakers' Flexibility to Switch Between Opposing and Following Responses.
    Ning LH
    J Speech Lang Hear Res; 2022 Jun; 65(6):2160-2186. PubMed ID: 35537117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of perturbation direction and magnitude on the neural processing of voice pitch feedback.
    Liu H; Meshman M; Behroozmand R; Larson CR
    Clin Neurophysiol; 2011 May; 122(5):951-7. PubMed ID: 20869305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback.
    Korzyukov O; Sattler L; Behroozmand R; Larson CR
    PLoS One; 2012; 7(7):e41216. PubMed ID: 22815974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensorimotor control of vocal pitch production in Parkinson's disease.
    Chen X; Zhu X; Wang EQ; Chen L; Li W; Chen Z; Liu H
    Brain Res; 2013 Aug; 1527():99-107. PubMed ID: 23820424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control.
    Behroozmand R; Korzyukov O; Sattler L; Larson CR
    J Acoust Soc Am; 2012 Oct; 132(4):2468-77. PubMed ID: 23039441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the mechanisms underlying voluntary responses to pitch-shifted auditory feedback.
    Patel S; Nishimura C; Lodhavia A; Korzyukov O; Parkinson A; Robin DA; Larson CR
    J Acoust Soc Am; 2014 May; 135(5):3036-44. PubMed ID: 24815283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relation of Articulatory and Vocal Auditory-Motor Control in Typical Speakers.
    Lester-Smith RA; Daliri A; Enos N; Abur D; Lupiani AA; Letcher S; Stepp CE
    J Speech Lang Hear Res; 2020 Nov; 63(11):3628-3642. PubMed ID: 33079610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological evidence of differential mechanisms involved in producing opposing and following responses to altered auditory feedback.
    Li W; Chen Z; Liu P; Zhang B; Huang D; Liu H
    Clin Neurophysiol; 2013 Nov; 124(11):2161-71. PubMed ID: 23751154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensorimotor adaptation to feedback perturbations of vowel acoustics and its relation to perception.
    Villacorta VM; Perkell JS; Guenther FH
    J Acoust Soc Am; 2007 Oct; 122(4):2306-19. PubMed ID: 17902866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bihemispheric network dynamics coordinating vocal feedback control.
    Kort NS; Cuesta P; Houde JF; Nagarajan SS
    Hum Brain Mapp; 2016 Apr; 37(4):1474-85. PubMed ID: 26917046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory-Motor Perturbations of Voice Fundamental Frequency: Feedback Delay and Amplification.
    Weerathunge HR; Abur D; Enos NM; Brown KM; Stepp CE
    J Speech Lang Hear Res; 2020 Sep; 63(9):2846-2860. PubMed ID: 32755506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Audio-vocal system regulation in children with autism spectrum disorders.
    Russo N; Larson C; Kraus N
    Exp Brain Res; 2008 Jun; 188(1):111-24. PubMed ID: 18347784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying distinct latent classes of pitch-shift response consistency: Evidence from manipulating the predictability of shift direction.
    Ning LH
    Front Psychol; 2022; 13():1058080. PubMed ID: 36591048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.