BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36405318)

  • 1. Surface-enhanced Raman scattering as a potential strategy for wearable flexible sensing and point-of-care testing non-invasive medical diagnosis.
    Liu G; Mu Z; Guo J; Shan K; Shang X; Yu J; Liang X
    Front Chem; 2022; 10():1060322. PubMed ID: 36405318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Flexible Surface-Enhanced Raman Scattering (SERS) Sensors for Point-of-Care Diagnostics.
    Xu K; Zhou R; Takei K; Hong M
    Adv Sci (Weinh); 2019 Aug; 6(16):1900925. PubMed ID: 31453071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed smart silk wearable sensors.
    Chu T; Wang H; Qiu Y; Luo H; He B; Wu B; Gao B
    Analyst; 2021 Mar; 146(5):1552-1558. PubMed ID: 33475623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable Plasmonic Sensors Engineered via Active-Site Maximization of TiVC MXene for Universal Physiological Monitoring at the Molecular Level.
    Liu X; Li T; Lee TC; Sun Y; Liu Y; Shang L; Han Y; Deng W; Yuan Z; Dang A
    ACS Sens; 2024 Jan; 9(1):483-493. PubMed ID: 38206578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection.
    Koh EH; Lee WC; Choi YJ; Moon JI; Jang J; Park SG; Choo J; Kim DH; Jung HS
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3024-3032. PubMed ID: 33404230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications.
    Prakashan D; P R R; Gandhi S
    Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers.
    Chung M; Skinner WH; Robert C; Campbell CJ; Rossi RM; Koutsos V; Radacsi N
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51504-51518. PubMed ID: 34672514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and reproducible silicon-based surface-enhanced Raman scattering sensors for real applications.
    Wang H; Jiang X; He Y
    Analyst; 2016 Aug; 141(17):5010-9. PubMed ID: 27414500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible, stretchable, and single-molecule-sensitive SERS-active sensor for wearable biosensing applications.
    Haque Chowdhury MA; Tasnim N; Hossain M; Habib A
    RSC Adv; 2023 Jul; 13(30):20787-20798. PubMed ID: 37441043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-Scale Flexible Surface-Enhanced Raman Scattering (SERS) Sensors with High Stability and Signal Homogeneity.
    Liu X; Ma J; Jiang P; Shen J; Wang R; Wang Y; Tu G
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45332-45341. PubMed ID: 32914628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Flexible SERS Substrates Integrated with a Portable Raman Analyzer and Wireless Communication for Point-of-Care Application.
    Zhang H; Zhao N; Li H; Wang M; Hao X; Sun M; Li X; Yang Z; Yu H; Tian C; Wang C
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51253-51264. PubMed ID: 36322068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric Field-Modulated Surface Enhanced Raman Spectroscopy by PVDF/Ag Hybrid.
    Lu J; Song Y; Lei F; Du X; Huo Y; Xu S; Li C; Ning T; Yu J; Zhang C
    Sci Rep; 2020 Mar; 10(1):5269. PubMed ID: 32210311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Wearable Optical Sensors for Vital Health Monitoring Systems-A Review.
    Kaur B; Kumar S; Kaushik BK
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS substrate fabrication for biochemical sensing: towards point-of-care diagnostics.
    Liu X; Guo J; Li Y; Wang B; Yang S; Chen W; Wu X; Guo J; Ma X
    J Mater Chem B; 2021 Oct; 9(40):8378-8388. PubMed ID: 34505606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanomaterials-based flexible strips for the SERS detection of gouty arthritis.
    Lien MC; Yeh IH; Lu YC; Liu KK
    Analyst; 2023 Aug; 148(17):4109-4115. PubMed ID: 37493461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mussel-inspired hydrogels for fast fabrication of flexible SERS tape for point-of-care testing of β-blockers.
    Cao Q; Chen C; Huang J; Shen D; Chen H; Zhong H; Liu Z; Guo Z
    Analyst; 2022 Aug; 147(16):3652-3661. PubMed ID: 35839093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable SERS Sensor Based on Omnidirectional Plasmonic Nanovoids Array with Ultra-High Sensitivity and Stability.
    Zhu K; Yang K; Zhang Y; Yang Z; Qian Z; Li N; Li L; Jiang G; Wang T; Zong S; Wu L; Wang Z; Cui Y
    Small; 2022 Aug; 18(32):e2201508. PubMed ID: 35843883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular-Imprinting-Based Surface-Enhanced Raman Scattering Sensors.
    Guo X; Li J; Arabi M; Wang X; Wang Y; Chen L
    ACS Sens; 2020 Mar; 5(3):601-619. PubMed ID: 32072805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose detection through surface-enhanced Raman spectroscopy: A review.
    Sun X
    Anal Chim Acta; 2022 May; 1206():339226. PubMed ID: 35473867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.