These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36405982)

  • 41. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.
    Han L; Zhang XY; Wang YL; Li X; Yang XH; Huang M; Hu K; Li LH; Wei Y
    J Control Release; 2017 Aug; 259():40-52. PubMed ID: 28288893
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biologically Responsive Nanosystems Targeting Cardiovascular Diseases.
    Song Z; Song K; Xiao Y; Guo H; Zhu Y; Wang X
    Curr Drug Deliv; 2021; 18(7):892-913. PubMed ID: 33504306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent Nanocarrier Approaches for Targeted Drug Delivery in Cancer Therapy.
    Bhatia R; Sharma A; Narang RK; Rawal RK
    Curr Mol Pharmacol; 2021; 14(3):350-366. PubMed ID: 32744982
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoimmunoengineering strategies in cancer diagnosis and therapy.
    Ghafelehbashi R; Farshbafnadi M; Aghdam NS; Amiri S; Salehi M; Razi S
    Clin Transl Oncol; 2023 Jan; 25(1):78-90. PubMed ID: 36076122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases.
    Sufi SA; Pajaniradje S; Mukherjee V; Rajagopalan R
    Antioxid Redox Signal; 2019 Feb; 30(5):762-785. PubMed ID: 29334759
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent Advances in Stimuli-Responsive Platforms for Cancer Immunotherapy.
    Li L; Yang Z; Chen X
    Acc Chem Res; 2020 Oct; 53(10):2044-2054. PubMed ID: 32877161
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.
    Palazzolo S; Bayda S; Hadla M; Caligiuri I; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4224-4268. PubMed ID: 28875844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Advances in the study of tumor pH-responsive polymeric micelles for cancer drug targeting delivery].
    Xu JX; Tang JB; Zhao LH; Shen YQ
    Yao Xue Xue Bao; 2009 Dec; 44(12):1328-35. PubMed ID: 21351464
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Soft matter assemblies as nanomedicine platforms for cancer chemotherapy: a journey from market products towards novel approaches.
    Jäger E; Giacomelli FC
    Curr Top Med Chem; 2015; 15(4):328-44. PubMed ID: 25633209
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polymeric vesicles: from drug carriers to nanoreactors and artificial organelles.
    Tanner P; Baumann P; Enea R; Onaca O; Palivan C; Meier W
    Acc Chem Res; 2011 Oct; 44(10):1039-49. PubMed ID: 21608994
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pH-bioresponsive poly(ε-caprolactone)-based polymersome for effective drug delivery in cancer and protein glycoxidation prevention.
    Ghorbanizamani F; Moulahoum H; Sanli S; Bayir E; Zihnioglu F; Timur S
    Arch Biochem Biophys; 2020 Nov; 695():108643. PubMed ID: 33122162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rational nanocarrier design towards clinical translation of cancer nanotherapy.
    Guo D; Ji X; Luo J
    Biomed Mater; 2021 Mar; 16(3):. PubMed ID: 33540386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives.
    Thangam R; Patel KD; Kang H; Paulmurugan R
    Vaccines (Basel); 2021 Aug; 9(8):. PubMed ID: 34452059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Potential drug delivery nanosystems for improving tumor penetration.
    Peng F; Li R; Zhang F; Qin L; Ling G; Zhang P
    Eur J Pharm Biopharm; 2020 Jun; 151():220-238. PubMed ID: 32311427
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy.
    Fu L; Zhou X; He C
    Macromol Biosci; 2021 Jul; 21(7):e2100075. PubMed ID: 33885225
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanocarriers for microRNA delivery in cancer medicine.
    Fernandez-Piñeiro I; Badiola I; Sanchez A
    Biotechnol Adv; 2017; 35(3):350-360. PubMed ID: 28286148
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of disulfide containing redox-responsive polymeric nanomedicine.
    Fu S; Rempson CM; Puche V; Zhao B; Zhang F
    Methods; 2022 Mar; 199():67-79. PubMed ID: 34971759
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioresponsive polymer-based nucleic acid carriers.
    Takemoto H; Miyata K; Nishiyama N; Kataoka K
    Adv Genet; 2014; 88():289-323. PubMed ID: 25409610
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent advances in nanomedicine-based delivery of histone deacetylase inhibitors for cancer therapy.
    Hafez DA; Hassanin IA; Teleb M; Khattab SN; Elkhodairy KA; Elzoghby AO
    Nanomedicine (Lond); 2021 Oct; 16(25):2305-2325. PubMed ID: 34551585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.
    Ling D; Lee N; Hyeon T
    Acc Chem Res; 2015 May; 48(5):1276-85. PubMed ID: 25922976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.