These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 36406340)

  • 1. Microfluidic-assisted fiber production: Potentials, limitations, and prospects.
    Abrishamkar A; Nilghaz A; Saadatmand M; Naeimirad M; deMello AJ
    Biomicrofluidics; 2022 Dec; 16(6):061504. PubMed ID: 36406340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology.
    Du XY; Li Q; Wu G; Chen S
    Adv Mater; 2019 Dec; 31(52):e1903733. PubMed ID: 31573714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics.
    Wu R; Kim T
    Lab Chip; 2021 Apr; 21(7):1217-1240. PubMed ID: 33710187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocompatible Micron-Scale Silk Fibers Fabricated by Microfluidic Wet Spinning.
    Lüken A; Geiger M; Steinbeck L; Joel AC; Lampert A; Linkhorst J; Wessling M
    Adv Healthc Mater; 2021 Oct; 10(20):e2100898. PubMed ID: 34331524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications.
    Gao Y; Ma Q; Cao J; Wang Y; Yang X; Xu Q; Liang Q; Sun Y
    Int J Pharm; 2021 May; 600():120465. PubMed ID: 33711469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning.
    Zhou T; NajafiKhoshnoo S; Esfandyarpour R; Kulinsky L
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Fabrication of Natural Polymer-Based Scaffolds for Tissue Engineering Applications: A Review.
    Rosellini E; Cascone MG
    Biomimetics (Basel); 2023 Feb; 8(1):. PubMed ID: 36810405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Polymers in Microfluidic Devices.
    Damiati LA; El-Yaagoubi M; Damiati SA; Kodzius R; Sefat F; Damiati S
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.
    Daniele MA; Boyd DA; Adams AA; Ligler FS
    Adv Healthc Mater; 2015 Jan; 4(1):11-28. PubMed ID: 24853649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics Fabrication of Micrometer-Sized Hydrogels with Precisely Controlled Geometries for Biomedical Applications.
    Wei Z; Wang S; Hirvonen J; Santos HA; Li W
    Adv Healthc Mater; 2022 Aug; 11(16):e2200846. PubMed ID: 35678152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics.
    Wu R; Ma L; Liu XY
    Adv Sci (Weinh); 2022 Feb; 9(4):e2103981. PubMed ID: 34802200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications.
    Zhao Q; Cui H; Wang Y; Du X
    Small; 2020 Mar; 16(9):e1903798. PubMed ID: 31650698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering.
    Tolabi H; Davari N; Khajehmohammadi M; Malektaj H; Nazemi K; Vahedi S; Ghalandari B; Reis RL; Ghorbani F; Oliveira JM
    Adv Mater; 2023 Jun; 35(26):e2208852. PubMed ID: 36633376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blow-Spun Collagen Nanofibrous Spongy Membrane: Preparation and Characterization.
    Zheng J; Yang CY; Wang X
    Tissue Eng Part C Methods; 2022 Jan; 28(1):3-11. PubMed ID: 35018821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications.
    Dos Santos DM; Correa DS; Medeiros ES; Oliveira JE; Mattoso LHC
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45673-45701. PubMed ID: 32937068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of fiber-optic biochemical sensor in microfluidic chips: A review.
    Zhao Y; Hu XG; Hu S; Peng Y
    Biosens Bioelectron; 2020 Oct; 166():112447. PubMed ID: 32738649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic spinning of editable polychromatic fibers.
    Zhang W; Hou C; Li Y; Zhang Q; Wang H
    J Colloid Interface Sci; 2020 Jan; 558():115-122. PubMed ID: 31585220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.