These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36406491)
1. Automated Proteomics Sample Preparation of Phosphatidylserine-Positive Extracellular Vesicles from Human Body Fluids. Muraoka S; Hirano M; Isoyama J; Ishida M; Tomonaga T; Adachi J ACS Omega; 2022 Nov; 7(45):41472-41479. PubMed ID: 36406491 [TBL] [Abstract][Full Text] [Related]
2. Hands-Free Proteomic Profiling of Urinary Extracellular Vesicles with a High-Throughput Automated Workflow. Lee ZC; Hadisurya M; Luo Z; Li L; Tao WA J Am Soc Mass Spectrom; 2023 Nov; 34(11):2585-2593. PubMed ID: 37870912 [TBL] [Abstract][Full Text] [Related]
3. Integrating automated liquid handling in the separation workflow of extracellular vesicles enhances specificity and reproducibility. Van Dorpe S; Lippens L; Boiy R; Pinheiro C; Vergauwen G; Rappu P; Miinalainen I; Tummers P; Denys H; De Wever O; Hendrix A J Nanobiotechnology; 2023 May; 21(1):157. PubMed ID: 37208684 [TBL] [Abstract][Full Text] [Related]
4. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification. Fang X; Chen C; Liu B; Ma Z; Hu F; Li H; Gu H; Xu H Acta Biomater; 2021 Apr; 124():336-347. PubMed ID: 33578055 [TBL] [Abstract][Full Text] [Related]
5. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Brett SI; Lucien F; Guo C; Williams KC; Kim Y; Durfee PN; Brinker CJ; Chin JI; Yang J; Leong HS Prostate; 2017 May; 77(13):1335-1343. PubMed ID: 28762517 [TBL] [Abstract][Full Text] [Related]
6. Proteomics, Phosphoproteomics and Mirna Analysis of Circulating Extracellular Vesicles through Automated and High-Throughput Isolation. Zhang H; Cai YH; Ding Y; Zhang G; Liu Y; Sun J; Yang Y; Zhan Z; Iliuk A; Gu Z; Gu Y; Tao WA Cells; 2022 Jun; 11(13):. PubMed ID: 35805153 [TBL] [Abstract][Full Text] [Related]
7. Peptide-mediated 'miniprep' isolation of extracellular vesicles is suitable for high-throughput proteomics. Knol JC; de Reus I; Schelfhorst T; Beekhof R; de Wit M; Piersma SR; Pham TV; Smit EF; Verheul HMW; Jiménez CR EuPA Open Proteom; 2016 Jun; 11():11-15. PubMed ID: 29900106 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. Guha D; Lorenz DR; Misra V; Chettimada S; Morgello S; Gabuzda D J Neuroinflammation; 2019 Dec; 16(1):254. PubMed ID: 31805958 [TBL] [Abstract][Full Text] [Related]
9. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags. Zhang W; Jiang L; Diefenbach RJ; Campbell DH; Walsh BJ; Packer NH; Wang Y ACS Sens; 2020 Mar; 5(3):764-771. PubMed ID: 32134252 [TBL] [Abstract][Full Text] [Related]
10. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Fan S; Poetsch A Proteomes; 2023 May; 11(2):. PubMed ID: 37218923 [TBL] [Abstract][Full Text] [Related]
11. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Irmer B; Chandrabalan S; Maas L; Bleckmann A; Menck K Cancers (Basel); 2023 Feb; 15(4):. PubMed ID: 36831648 [TBL] [Abstract][Full Text] [Related]
12. Ultra-Sensitive Automated Profiling of EpCAM Expression on Tumor-Derived Extracellular Vesicles. Amrollahi P; Rodrigues M; Lyon CJ; Goel A; Han H; Hu TY Front Genet; 2019; 10():1273. PubMed ID: 31921310 [TBL] [Abstract][Full Text] [Related]
14. Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. Kreimer S; Belov AM; Ghiran I; Murthy SK; Frank DA; Ivanov AR J Proteome Res; 2015 Jun; 14(6):2367-84. PubMed ID: 25927954 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Segura-Benítez M; Carbajo-García MC; Corachán A; Faus A; Pellicer A; Ferrero H Reprod Biol Endocrinol; 2022 Jan; 20(1):3. PubMed ID: 34980157 [TBL] [Abstract][Full Text] [Related]
16. Proteomics for comprehensive characterization of extracellular vesicles in neurodegenerative disease. Vinaiphat A; Sze SK Exp Neurol; 2022 Sep; 355():114149. PubMed ID: 35732219 [TBL] [Abstract][Full Text] [Related]
17. Unraveling the complexity of the extracellular vesicle landscape with advanced proteomics. Morales-Sanfrutos J; Munoz J Expert Rev Proteomics; 2022 Feb; 19(2):89-101. PubMed ID: 35290757 [TBL] [Abstract][Full Text] [Related]
18. Fully Automated, Label-Free Isolation of Extracellular Vesicles from Whole Blood for Cancer Diagnosis and Monitoring. Sunkara V; Kim CJ; Park J; Woo HK; Kim D; Ha HK; Kim MH; Son Y; Kim JR; Cho YK Theranostics; 2019; 9(7):1851-1863. PubMed ID: 31037143 [TBL] [Abstract][Full Text] [Related]
19. CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1) Silverman JM; Christy D; Shyu CC; Moon KM; Fernando S; Gidden Z; Cowan CM; Ban Y; Stacey RG; Grad LI; McAlary L; Mackenzie IR; Foster LJ; Cashman NR J Biol Chem; 2019 Mar; 294(10):3744-3759. PubMed ID: 30635404 [TBL] [Abstract][Full Text] [Related]
20. Comparing small urinary extracellular vesicle purification methods with a view to RNA sequencing-Enabling robust and non-invasive biomarker research. Mussack V; Wittmann G; Pfaffl MW Biomol Detect Quantif; 2019 Mar; 17():100089. PubMed ID: 31194192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]