These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36406534)

  • 1. Flavin Mononucleotide-Dependent l-Lactate Dehydrogenases: Expanding the Toolbox of Enzymes for l-Lactate Biosensors.
    Tsvik L; Steiner B; Herzog P; Haltrich D; Sützl L
    ACS Omega; 2022 Nov; 7(45):41480-41492. PubMed ID: 36406534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ala95-to-Gly substitution in Aerococcus viridans l-lactate oxidase revisited - structural consequences at the catalytic site and effect on reactivity with O2 and other electron acceptors.
    Stoisser T; Rainer D; Leitgeb S; Wilson DK; Nidetzky B
    FEBS J; 2015 Feb; 282(3):562-78. PubMed ID: 25423902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speeding up the product release: a second-sphere contribution from Tyr191 to the reactivity of L-lactate oxidase revealed in crystallographic and kinetic studies of site-directed variants.
    Stoisser T; Klimacek M; Wilson DK; Nidetzky B
    FEBS J; 2015 Nov; 282(21):4130-40. PubMed ID: 26260739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational engineering of Aerococcus viridansl-lactate oxidase for the mediator modification to achieve quasi-direct electron transfer type lactate sensor.
    Hiraka K; Kojima K; Tsugawa W; Asano R; Ikebukuro K; Sode K
    Biosens Bioelectron; 2020 Mar; 151():111974. PubMed ID: 31999581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-lactate oxidase and L-lactate monooxygenase: mechanistic variations on a common structural theme.
    Maeda-Yorita K; Aki K; Sagai H; Misaki H; Massey V
    Biochimie; 1995; 77(7-8):631-42. PubMed ID: 8589073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 2.1 A structure of Aerococcus viridans L-lactate oxidase (LOX).
    Leiros I; Wang E; Rasmussen T; Oksanen E; Repo H; Petersen SB; Heikinheimo P; Hough E
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Dec; 62(Pt 12):1185-90. PubMed ID: 17142893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMN-dependent oligomerization of putative lactate oxidase from Pediococcus acidilactici.
    Ashok Y; Maksimainen MM; Kallio T; Kilpeläinen P; Lehtiö L
    PLoS One; 2020; 15(2):e0223870. PubMed ID: 32092083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray structures of Aerococcus viridans lactate oxidase and its complex with D-lactate at pH 4.5 show an alpha-hydroxyacid oxidation mechanism.
    Furuichi M; Suzuki N; Dhakshnamoorhty B; Minagawa H; Yamagishi R; Watanabe Y; Goto Y; Kaneko H; Yoshida Y; Yagi H; Waga I; Kumar PK; Mizuno H
    J Mol Biol; 2008 Apr; 378(2):436-46. PubMed ID: 18367206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimizing the effects of oxygen interference on l-lactate sensors by a single amino acid mutation in Aerococcus viridansl-lactate oxidase.
    Hiraka K; Kojima K; Lin CE; Tsugawa W; Asano R; La Belle JT; Sode K
    Biosens Bioelectron; 2018 Apr; 103():163-170. PubMed ID: 29279290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Employment of 1-Methoxy-5-Ethyl Phenazinium Ethyl Sulfate as a Stable Electron Mediator in Flavin Oxidoreductases-Based Sensors.
    Fitriana M; Loew N; Witarto AB; Ikebukuro K; Sode K; Tsugawa W
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and analysis of the L-lactate utilization genes from Streptococcus iniae.
    Gibello A; Collins MD; Domínguez L; Fernández-Garayzábal JF; Richardson PT
    Appl Environ Microbiol; 1999 Oct; 65(10):4346-50. PubMed ID: 10508058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of two arginine residues in lactate oxidase with the enzyme flavin: conversion of FMN to 8-formyl-FMN.
    Yorita K; Matsuoka T; Misaki H; Massey V
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13039-44. PubMed ID: 11078532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.
    Lederer F; Vignaud C; North P; Bodevin S
    Biochim Biophys Acta; 2016 Sep; 1864(9):1215-1221. PubMed ID: 27155230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the interpretation of quantitative structure-function activity relationship data for lactate oxidase.
    Yorita K; Misaki H; Palfey BA; Massey V
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2480-5. PubMed ID: 10706608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor.
    Hiraka K; Tsugawa W; Asano R; Yokus MA; Ikebukuro K; Daniele MA; Sode K
    Biosens Bioelectron; 2021 Mar; 176():112933. PubMed ID: 33395570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism.
    Cao Y; Han S; Yu L; Qian H; Chen JZ
    J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence of long chain alpha-hydroxy acid oxidase from rat kidney, a member of the family of FMN-dependent alpha-hydroxy acid-oxidizing enzymes.
    Diêp Lê KH; Lederer F
    J Biol Chem; 1991 Nov; 266(31):20877-81. PubMed ID: 1939137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme pKa displacements at the active sites of FMN-dependent alpha-hydroxy acid-oxidizing enzymes.
    Lederer F
    Protein Sci; 1992 Apr; 1(4):540-8. PubMed ID: 1338973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding.
    Lindqvist Y; Brändén CI; Mathews FS; Lederer F
    J Biol Chem; 1991 Feb; 266(5):3198-207. PubMed ID: 1993693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.