These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 36406685)
1. Removal of copper by Al-Baldawi IA; Yasin SR; Jasim SS; Abdullah SRS; Almansoory AF; Ismail N' Heliyon; 2022 Nov; 8(11):e11456. PubMed ID: 36406685 [TBL] [Abstract][Full Text] [Related]
2. Field-based investigation on phytoremediation potentials of Lemna minor and Azolla filiculoides in tropical, semiarid regions: Case of Ethiopia. Amare E; Kebede F; Berihu T; Mulat W Int J Phytoremediation; 2018 Aug; 20(10):965-972. PubMed ID: 29035573 [TBL] [Abstract][Full Text] [Related]
3. Phenanthrene stress response and phytoremediation potential of free-floating fern Kösesakal T; Seyhan M Int J Phytoremediation; 2023; 25(2):207-220. PubMed ID: 35501688 [TBL] [Abstract][Full Text] [Related]
4. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study. Arshadi M; Abdolmaleki MK; Mousavinia F; Foroughifard S; Karimzadeh A J Colloid Interface Sci; 2017 Jan; 486():296-308. PubMed ID: 27723483 [TBL] [Abstract][Full Text] [Related]
5. Competition between Free-Floating Plants Is Strongly Driven by Previously Experienced Phosphorus Concentrations in the Water Column. Peeters ET; Neefjes RE; Zuidam BG PLoS One; 2016; 11(9):e0162780. PubMed ID: 27622519 [TBL] [Abstract][Full Text] [Related]
6. Competition Between Paolacci S; Jansen MAK; Harrison S Front Chem; 2018; 6():207. PubMed ID: 29963546 [TBL] [Abstract][Full Text] [Related]
7. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Bianchi E; Biancalani A; Berardi C; Antal A; Fibbi D; Coppi A; Lastrucci L; Bussotti N; Colzi I; Renai L; Scordo C; Del Bubba M; Gonnelli C Sci Total Environ; 2020 Dec; 746():141219. PubMed ID: 32768785 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation of heavy metals (Ni, Cd, Pb) by Naghipour D; Ashrafi SD; Gholamzadeh M; Taghavi K; Naimi-Joubani M Data Brief; 2018 Dec; 21():1409-1414. PubMed ID: 30456265 [TBL] [Abstract][Full Text] [Related]
9. A combination method based on chitosan adsorption and duckweed (Lemna gibba L.) phytoremediation for boron (B) removal from drinking water. Türker OC; Baran T Int J Phytoremediation; 2018 Jan; 20(2):175-183. PubMed ID: 28692304 [TBL] [Abstract][Full Text] [Related]
10. Short and long-term phytoremediation capacity of aquatic plants in Cu-polluted environments. Enochs B; Meindl G; Shidemantle G; Wuerthner V; Akerele D; Bartholomew A; Bulgrien B; Davis A; Hoyt K; Kung L; Molina M; Miller E; Winship A; Zhang Y; Graney J; Collins D; Hua J Heliyon; 2023 Jan; 9(1):e12805. PubMed ID: 36685386 [TBL] [Abstract][Full Text] [Related]
11. Removal of copper(II) ions from aqueous solutions by Azolla rongpong: batch and continuous study. Nedumaran B; Velan M J Environ Sci Eng; 2008 Jan; 50(1):23-8. PubMed ID: 19192923 [TBL] [Abstract][Full Text] [Related]
12. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes. Talebi M; Tabatabaei BES; Akbarzadeh H Chemosphere; 2019 Sep; 230():488-497. PubMed ID: 31121512 [TBL] [Abstract][Full Text] [Related]
13. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide. Obermeier M; Schröder CA; Helmreich B; Schröder P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797 [TBL] [Abstract][Full Text] [Related]
15. Adsorptive Removal of Azithromycin Antibiotic from Aqueous Solution by Azolla Filiculoides-Based Activated Porous Carbon. Balarak D; Mahvi AH; Shahbaksh S; Wahab MA; Abdala A Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947630 [TBL] [Abstract][Full Text] [Related]
16. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. Rakhshaee R; Khosravi M; Ganji MT J Hazard Mater; 2006 Jun; 134(1-3):120-9. PubMed ID: 16325335 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of Cd(II), Cu(II) and Ni(II) ions by Lemna minor L.: effect of physicochemical environment. Saygideger S; Gulnaz O; Istifli ES; Yucel N J Hazard Mater; 2005 Nov; 126(1-3):96-104. PubMed ID: 16051430 [TBL] [Abstract][Full Text] [Related]
18. Pre-treatment processes of Azolla filiculoides to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution in the batch and fixed-bed reactors. Khosravi M; Rakhshaee R; Ganji MT J Hazard Mater; 2005 Dec; 127(1-3):228-37. PubMed ID: 16111810 [TBL] [Abstract][Full Text] [Related]
19. Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. Padmesh TV; Vijayaraghavan K; Sekaran G; Velan M J Hazard Mater; 2005 Oct; 125(1-3):121-9. PubMed ID: 15955624 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM; Pracejus B; Victor R Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]