These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36407116)
1. Accuracy and feasibility with AI-assisted OCT in retinal disorder community screening. Bai J; Wan Z; Li P; Chen L; Wang J; Fan Y; Chen X; Peng Q; Gao P Front Cell Dev Biol; 2022; 10():1053483. PubMed ID: 36407116 [No Abstract] [Full Text] [Related]
2. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844 [TBL] [Abstract][Full Text] [Related]
3. Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital. Liu R; Li Q; Xu F; Wang S; He J; Cao Y; Shi F; Chen X; Chen J Biomed Eng Online; 2022 Jul; 21(1):47. PubMed ID: 35859144 [TBL] [Abstract][Full Text] [Related]
4. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Classification of Drusen, Choroidal Neovascularization, and Diabetic Macular Edema in Optical Coherence Tomography (OCT) Images. Riazi Esfahani P; Reddy AJ; Nawathey N; Ghauri MS; Min M; Wagh H; Tak N; Patel R Cureus; 2023 Jul; 15(7):e41615. PubMed ID: 37565126 [TBL] [Abstract][Full Text] [Related]
6. [Multimodal Approaches for the Analysis of Retinal Functional Disorders―Focusing on Retinal Detachment]. Terasaki H Nippon Ganka Gakkai Zasshi; 2017 Mar; 121(3):185-231. PubMed ID: 30088405 [TBL] [Abstract][Full Text] [Related]
7. Artificial intelligence in retinal screening using OCT images: A review of the last decade (2013-2023). Akpinar MH; Sengur A; Faust O; Tong L; Molinari F; Acharya UR Comput Methods Programs Biomed; 2024 Sep; 254():108253. PubMed ID: 38861878 [TBL] [Abstract][Full Text] [Related]
8. Developing and Evaluating an AI-Based Computer-Aided Diagnosis System for Retinal Disease: Diagnostic Study for Central Serous Chorioretinopathy. Yoon J; Han J; Ko J; Choi S; Park JI; Hwang JS; Han JM; Hwang DD J Med Internet Res; 2023 Nov; 25():e48142. PubMed ID: 38019564 [TBL] [Abstract][Full Text] [Related]
9. OCT Risk Factors for 3-Year Development of Macular Complications in Eyes With "Resolved" Chronic Central Serous Chorioretinopathy. Borrelli E; Battista M; Sacconi R; Gelormini F; Querques L; Grosso D; Vella G; Bandello F; Querques G Am J Ophthalmol; 2021 Mar; 223():129-139. PubMed ID: 33342759 [TBL] [Abstract][Full Text] [Related]
10. Automated Detection of Posterior Vitreous Detachment on OCT Using Computer Vision and Deep Learning Algorithms. Li AL; Feng M; Wang Z; Baxter SL; Huang L; Arnett J; Bartsch DG; Kuo DE; Saseendrakumar BR; Guo J; Nudleman E Ophthalmol Sci; 2023 Jun; 3(2):100254. PubMed ID: 36691594 [TBL] [Abstract][Full Text] [Related]
11. Optical coherence tomography of choroidal nevus in 120 patients. Shields CL; Mashayekhi A; Materin MA; Luo CK; Marr BP; Demirci H; Shields JA Retina; 2005; 25(3):243-52. PubMed ID: 15805899 [TBL] [Abstract][Full Text] [Related]
12. [Relationship between vitrectomy and the morphology and function of the retina]. Terasaki H Nippon Ganka Gakkai Zasshi; 2003 Dec; 107(12):836-64; discussion 865. PubMed ID: 14733133 [TBL] [Abstract][Full Text] [Related]
14. Posterior vitreous cortex contributes to macular hole in highly myopic eyes with retinal detachment. Liu HY; Zou HD; Liu K; Song ZY; Xu X; Sun XD Chin Med J (Engl); 2011 Aug; 124(16):2474-9. PubMed ID: 21933590 [TBL] [Abstract][Full Text] [Related]
15. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Sakamoto A; Hangai M; Yoshimura N Ophthalmology; 2008 Jun; 115(6):1071-1078.e7. PubMed ID: 18061270 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity and Specificity of Potential Diagnostic Features Detected Using Fundus Photography, Optical Coherence Tomography, and Fluorescein Angiography for Polypoidal Choroidal Vasculopathy. Chaikitmongkol V; Kong J; Khunsongkiet P; Patikulsila D; Sachdeva M; Chavengsaksongkram P; Dejkriengkraikul C; Winaikosol P; Choovuthayakorn J; Watanachai N; Kunavisarut P; Ingviya T; Bressler NM JAMA Ophthalmol; 2019 Jun; 137(6):661-667. PubMed ID: 30973593 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images. Li Y; Feng W; Zhao X; Liu B; Zhang Y; Chi W; Lu M; Lin J; Wei Y; Li J; Zhang Q; Zhu Y; Chen C; Lu L; Zhao L; Lin H Br J Ophthalmol; 2022 May; 106(5):633-639. PubMed ID: 33355150 [TBL] [Abstract][Full Text] [Related]
19. Assessment of serous macular detachment in eyes with diabetic macular edema by use of spectral-domain optical coherence tomography. Koleva-Georgieva D; Sivkova N Graefes Arch Clin Exp Ophthalmol; 2009 Nov; 247(11):1461-9. PubMed ID: 19547995 [TBL] [Abstract][Full Text] [Related]
20. Development of a deep learning algorithm for myopic maculopathy classification based on OCT images using transfer learning. He X; Ren P; Lu L; Tang X; Wang J; Yang Z; Han W Front Public Health; 2022; 10():1005700. PubMed ID: 36211704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]