BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36407570)

  • 1. Left ventricle chest compression improves ETCO
    Marshall RA; Morton JS; Luchkanych AMS; El Karsh Y; El Karsh Z; Morse C; Tomczak CR; Grunau BE; Olver TD
    Resusc Plus; 2022 Dec; 12():100326. PubMed ID: 36407570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of an end-tidal carbon dioxide-guided algorithm during cardiopulmonary resuscitation improves short-term survival in paediatric swine.
    O'Brien CE; Santos PT; Kulikowicz E; Adams S; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    Resusc Plus; 2021 Dec; 8():100174. PubMed ID: 34820656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support.
    Hamrick JL; Hamrick JT; Lee JK; Lee BH; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2014 Apr; 3(2):e000450. PubMed ID: 24732917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of thrust, depth and the impedance cardiogram as measures of cardiopulmonary resuscitation efficacy in a porcine model of cardiac arrest.
    Howe A; O'Hare P; Crawford P; Delafont B; McAlister O; Di Maio R; Clutton E; Adgey J; McEneaney D
    Resuscitation; 2015 Nov; 96():114-20. PubMed ID: 26234892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased cortical cerebral blood flow with LUCAS; a new device for mechanical chest compressions compared to standard external compressions during experimental cardiopulmonary resuscitation.
    Rubertsson S; Karlsten R
    Resuscitation; 2005 Jun; 65(3):357-63. PubMed ID: 15919574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left Ventricular Compressions Improve Hemodynamics in a Swine Model of Out-of-Hospital Cardiac Arrest.
    Anderson KL; Castaneda MG; Boudreau SM; Sharon DJ; Bebarta VS
    Prehosp Emerg Care; 2017; 21(2):272-280. PubMed ID: 27918847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest.
    Timerman S; Cardoso LF; Ramires JA; Halperin H
    Resuscitation; 2004 Jun; 61(3):273-80. PubMed ID: 15172705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest.
    Skulec R; Vojtisek P; Cerny V
    Crit Care; 2019 Oct; 23(1):334. PubMed ID: 31665061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventilation during continuous compressions or at 30:2 compression-to-ventilation ratio results in similar arterial oxygen and carbon dioxide levels in an experimental model of prolonged cardiac arrest.
    Kopra J; Litonius E; Pekkarinen PT; Laitinen M; Heinonen JA; Fontanelli L; Mäkiaho TP; Skrifvars MB
    Intensive Care Med Exp; 2023 Jan; 11(1):3. PubMed ID: 36607514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival and neurologic outcome after cardiopulmonary resuscitation with four different chest compression-ventilation ratios.
    Sanders AB; Kern KB; Berg RA; Hilwig RW; Heidenrich J; Ewy GA
    Ann Emerg Med; 2002 Dec; 40(6):553-62. PubMed ID: 12447330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chest compression by two-thumb encircling method generates higher carotid artery blood flow in swine infant model of cardiac arrest.
    Udassi S; Haque IU; Lopez-Colon D; Shih A; Vasudeva D; Kaliki-Venkata G; Weiss M; Zaritsky AL; Udassi JP
    Resusc Plus; 2021 Jun; 6():100118. PubMed ID: 34223377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chest compression and ventilation rates during cardiopulmonary resuscitation: the effects of audible tone guidance.
    Milander MM; Hiscok PS; Sanders AB; Kern KB; Berg RA; Ewy GA
    Acad Emerg Med; 1995 Aug; 2(8):708-13. PubMed ID: 7584749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of an inspiratory impedance threshold valve during chest compressions without assisted ventilation may result in hypoxaemia.
    Herff H; Raedler C; Zander R; Wenzel V; Schmittinger CA; Brenner E; Rieger M; Lindner KH
    Resuscitation; 2007 Mar; 72(3):466-76. PubMed ID: 17150297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs.
    Yannopoulos D; Aufderheide TP; McKnite S; Kotsifas K; Charris R; Nadkarni V; Lurie KG
    Resuscitation; 2006 Jun; 69(3):487-94. PubMed ID: 16678959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of blood flow between two mechanical compression devices using ultrasound: Animal trial.
    Ryu JH; Min MK; Lee DS; Lee MJ; Chun MS; Hyun T; Shon SW
    Am J Emerg Med; 2022 Oct; 60():116-120. PubMed ID: 35952571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between manual and mechanical chest compressions during resuscitation in a pediatric animal model of asphyxial cardiac arrest.
    López J; Fernández SN; González R; Solana MJ; Urbano J; Toledo B; López-Herce J
    PLoS One; 2017; 12(11):e0188846. PubMed ID: 29190801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.