These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 36407837)
21. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Gkogkou E; Barnasas G; Vougas K; Trougakos IP Redox Biol; 2020 Sep; 36():101615. PubMed ID: 32863223 [TBL] [Abstract][Full Text] [Related]
23. Human cell receptors: potential drug targets to combat COVID-19. Raghav PK; Kalyanaraman K; Kumar D Amino Acids; 2021 Jun; 53(6):813-842. PubMed ID: 33950300 [TBL] [Abstract][Full Text] [Related]
24. SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Bhattacharyya C; Das C; Ghosh A; Singh AK; Mukherjee S; Majumder PP; Basu A; Biswas NK Infect Genet Evol; 2021 Jun; 90():104760. PubMed ID: 33556558 [TBL] [Abstract][Full Text] [Related]
25. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. Groß S; Jahn C; Cushman S; Bär C; Thum T J Mol Cell Cardiol; 2020 Jul; 144():47-53. PubMed ID: 32360703 [TBL] [Abstract][Full Text] [Related]
26. Tripartite Combination of Candidate Pandemic Mitigation Agents: Vitamin D, Quercetin, and Estradiol Manifest Properties of Medicinal Agents for Targeted Mitigation of the COVID-19 Pandemic Defined by Genomics-Guided Tracing of SARS-CoV-2 Targets in Human Cells. Glinsky GV Biomedicines; 2020 May; 8(5):. PubMed ID: 32455629 [TBL] [Abstract][Full Text] [Related]
28. Correlation between α1-Antitrypsin Deficiency and SARS-CoV-2 Infection: Epidemiological Data and Pathogenetic Hypotheses. Vianello A; Guarnieri G; Braccioni F; Molena B; Lococo S; Achille A; Lionello F; Salviati L; Caminati M; Senna G J Clin Med; 2021 Sep; 10(19):. PubMed ID: 34640510 [TBL] [Abstract][Full Text] [Related]
29. Comparative cleavage sites within the reactive-site loop of native and oxidized alpha1-proteinase inhibitor by selected bacterial proteinases. Rapala-Kozik M; Potempa J; Nelson D; Kozik A; Travis J Biol Chem; 1999 Oct; 380(10):1211-6. PubMed ID: 10595584 [TBL] [Abstract][Full Text] [Related]
30. Inactivation of alpha1-proteinase inhibitor as a broad screen for detecting proteolytic activities in unknown samples. Nelson D; Potempa J; Travis J Anal Biochem; 1998 Jul; 260(2):230-6. PubMed ID: 9657883 [TBL] [Abstract][Full Text] [Related]
31. [Parameters of plasma blood proteolysis and phenotypes of alpha1-proteinase inhibitor in children with duodenal ulcer]. Akbasheva OE Biomed Khim; 2007; 53(3):338-44. PubMed ID: 17722585 [TBL] [Abstract][Full Text] [Related]
32. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
33. Engineering D-helix of antithrombin in alpha-1-proteinase inhibitor confers antiinflammatory properties on the chimeric serpin. Yang L; Dinarvand P; Qureshi SH; Rezaie AR Thromb Haemost; 2014 Jul; 112(1):164-75. PubMed ID: 24522239 [TBL] [Abstract][Full Text] [Related]
34. Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart. Liu H; Gai S; Wang X; Zeng J; Sun C; Zhao Y; Zheng Z Cardiovasc Res; 2020 Aug; 116(10):1733-1741. PubMed ID: 32638018 [TBL] [Abstract][Full Text] [Related]
35. Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. Zhao X; Chen D; Szabla R; Zheng M; Li G; Du P; Zheng S; Li X; Song C; Li R; Guo JT; Junop M; Zeng H; Lin H J Virol; 2020 Aug; 94(18):. PubMed ID: 32661139 [TBL] [Abstract][Full Text] [Related]
36. Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V. Bollavaram K; Leeman TH; Lee MW; Kulkarni A; Upshaw SG; Yang J; Song H; Platt MO Protein Sci; 2021 Jun; 30(6):1131-1143. PubMed ID: 33786919 [TBL] [Abstract][Full Text] [Related]
37. Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review. Aleksova A; Gagno G; Sinagra G; Beltrami AP; Janjusevic M; Ippolito G; Zumla A; Fluca AL; Ferro F Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33926110 [TBL] [Abstract][Full Text] [Related]
38. Therapeutic potential of green tea catechin, (-)-epigallocatechin-3- Dinda B; Dinda S; Dinda M Phytomed Plus; 2023 Feb; 3(1):100402. PubMed ID: 36597465 [TBL] [Abstract][Full Text] [Related]
39. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Wang K; Gheblawi M; Nikhanj A; Munan M; MacIntyre E; O'Neil C; Poglitsch M; Colombo D; Del Nonno F; Kassiri Z; Sligl W; Oudit GY Hypertension; 2022 Feb; 79(2):365-378. PubMed ID: 34844421 [TBL] [Abstract][Full Text] [Related]
40. The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G. Scott FL; Hirst CE; Sun J; Bird CH; Bottomley SP; Bird PI Blood; 1999 Mar; 93(6):2089-97. PubMed ID: 10068683 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]