These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36407912)

  • 1. Hybrid material based on hyaluronan hydrogels and poly(l-lactide
    Kivijärvi T; Øyvind Goksøyr ; Yassin MA; Jain S; Yamada S; Morales-López A; Mustafa K; Finne-Wistrand A
    Mater Today Bio; 2022 Dec; 17():100483. PubMed ID: 36407912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs.
    Shanbhag S; Suliman S; Mohamed-Ahmed S; Kampleitner C; Hassan MN; Heimel P; Dobsak T; Tangl S; Bolstad AI; Mustafa K
    Stem Cell Res Ther; 2021 Nov; 12(1):575. PubMed ID: 34776000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered Shape-Morphing Scaffolds with a Hierarchical Structure for Uterine Tissue Regeneration.
    Chen S; Tan S; Zheng L; Wang M
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):6772-6788. PubMed ID: 38295266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact osteogenesis by biodegradable 3D-printed poly(lactide-co-trimethylene carbonate).
    Hassan MN; Yassin MA; Eltawila AM; Aladawi AE; Mohamed-Ahmed S; Suliman S; Kandil S; Mustafa K
    Biomater Res; 2022 Oct; 26(1):55. PubMed ID: 36217173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification.
    Jain S; Yassin MA; Fuoco T; Liu H; Mohamed-Ahmed S; Mustafa K; Finne-Wistrand A
    J Tissue Eng; 2020; 11():2041731420954316. PubMed ID: 32983402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between Ca Release and Osteoconduction by 3D-Printed Hydroxyapatite-Based Templates.
    Hassan MN; Eltawila AM; Mohamed-Ahmed S; Amin WM; Suliman S; Kandil S; Yassin MA; Mustafa K
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28056-28069. PubMed ID: 38795033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications.
    Zhang Y; Rossi F; Papa S; Violatto MB; Bigini P; Sorbona M; Redaelli F; Veglianese P; Hilborn J; Ossipov DA
    Acta Biomater; 2016 Jan; 30():188-198. PubMed ID: 26621694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage.
    Tosoratti E; Fisch P; Taylor S; Laurent-Applegate LA; Zenobi-Wong M
    Adv Healthc Mater; 2021 Dec; 10(23):e2101094. PubMed ID: 34633151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties.
    Milojević M; Harih G; Vihar B; Vajda J; Gradišnik L; Zidarič T; Stana Kleinschek K; Maver U; Maver T
    Pharmaceutics; 2021 Apr; 13(4):. PubMed ID: 33923475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ectopic Bone Tissue Engineering in Mice Using Human Gingiva or Bone Marrow-Derived Stromal/Progenitor Cells in Scaffold-Hydrogel Constructs.
    Shanbhag S; Kampleitner C; Mohamed-Ahmed S; Yassin MA; Dongre H; Costea DE; Tangl S; Stavropoulos A; Bolstad AI; Suliman S; Mustafa K
    Front Bioeng Biotechnol; 2021; 9():783468. PubMed ID: 34917602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds.
    Bittner SM; Pearce HA; Hogan KJ; Smoak MM; Guo JL; Melchiorri AJ; Scott DW; Mikos AG
    Tissue Eng Part A; 2021 Jun; 27(11-12):665-678. PubMed ID: 33470161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bioprinting method and system for forming hybrid tissue engineering constructs.
    Shanjani Y; Pan CC; Elomaa L; Yang Y
    Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering.
    Jung Y; Kim SH; Kim YH; Kim SH
    J Biomater Sci Polym Ed; 2010; 21(5):581-92. PubMed ID: 20338093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vitro Degradation of 3D-Printed Poly(L-lactide-Co-Glycolic Acid) Scaffolds for Tissue Engineering Applications.
    Ghosh Dastidar A; Clarke SA; Larrañeta E; Buchanan F; Manda K
    Polymers (Basel); 2023 Sep; 15(18):. PubMed ID: 37765567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters.
    Jain S; Fuoco T; Yassin MA; Mustafa K; Finne-Wistrand A
    Biomacromolecules; 2020 Feb; 21(2):388-396. PubMed ID: 31566357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.