BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 36408139)

  • 1. Orchestration of mesenchymal plasticity and immune evasiveness
    Hashimoto A; Handa H; Hata S; Hashimoto S
    Front Oncol; 2022; 12():1005566. PubMed ID: 36408139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADP-Ribosylation Factor 6 Pathway Acts as a Key Executor of Mesenchymal Tumor Plasticity.
    Hashimoto A; Hashimoto S
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance.
    Palamaris K; Felekouras E; Sakellariou S
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma.
    Fu Y; Liu S; Zeng S; Shen H
    Mol Cancer; 2018 Feb; 17(1):62. PubMed ID: 29458370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells.
    Wu YS; Chung I; Wong WF; Masamune A; Sim MS; Looi CY
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):296-306. PubMed ID: 27750041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the Metabolic Rewiring in Pancreatic Cancer and Its Tumor Microenvironment.
    Yamamoto K; Iwadate D; Kato H; Nakai Y; Tateishi K; Fujishiro M
    Cancers (Basel); 2022 Sep; 14(18):. PubMed ID: 36139512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARF6 and AMAP1 are major targets of
    Hashimoto S; Furukawa S; Hashimoto A; Tsutaho A; Fukao A; Sakamura Y; Parajuli G; Onodera Y; Otsuka Y; Handa H; Oikawa T; Hata S; Nishikawa Y; Mizukami Y; Kodama Y; Murakami M; Fujiwara T; Hirano S; Sabe H
    Proc Natl Acad Sci U S A; 2019 Aug; 116(35):17450-17459. PubMed ID: 31399545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pancreatic Tumor Microenvironment.
    Wang K; He H
    Adv Exp Med Biol; 2020; 1296():243-257. PubMed ID: 34185297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic reprogramming by driver mutation-tumor microenvironment interplay in pancreatic cancer: new therapeutic targets.
    Andersen HB; Ialchina R; Pedersen SF; Czaplinska D
    Cancer Metastasis Rev; 2021 Dec; 40(4):1093-1114. PubMed ID: 34855109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma.
    Liu M; Quek LE; Sultani G; Turner N
    Cancer Metab; 2016; 4():19. PubMed ID: 27777765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Biomimetic Tumor Model of Heterogeneous Invasion in Pancreatic Ductal Adenocarcinoma.
    Bradney MJ; Venis SM; Yang Y; Konieczny SF; Han B
    Small; 2020 Mar; 16(10):e1905500. PubMed ID: 31997571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Pancreatic Ductal Adenocarcinoma Treatment.
    Anderson EM; Thomassian S; Gong J; Hendifar A; Osipov A
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial to Mesenchymal Transition in Patients with Pancreatic Ductal Adenocarcinoma: State-of-the-Art and Therapeutic Opportunities.
    Dardare J; Witz A; Merlin JL; Bochnakian A; Toussaint P; Gilson P; Harlé A
    Pharmaceuticals (Basel); 2021 Jul; 14(8):. PubMed ID: 34451837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A Review of Metabolic Stress and Development of Pancreatic Cancer].
    Li JT; Lei MZ; Lei QY; Yin M
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jan; 52(1):5-10. PubMed ID: 33474881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reprogramming of Amino Acid Metabolism in Pancreatic Cancer: Recent Advances and Therapeutic Strategies.
    Xu R; Yang J; Ren B; Wang H; Yang G; Chen Y; You L; Zhao Y
    Front Oncol; 2020; 10():572722. PubMed ID: 33117704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics.
    Smigiel JM; Parameswaran N; Jackson MW
    Cancers (Basel); 2018 Jan; 10(1):. PubMed ID: 29320425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparative Endocrine Trans-Differentiation Approach to Pancreatic Ductal Adenocarcinoma Cells with Different EMT Phenotypes Identifies Quasi-Mesenchymal Tumor Cells as Those with Highest Plasticity.
    Schmidtlein PM; Volz C; Braun R; Thürling I; Lapshyna O; Wellner UF; Konukiewitz B; Lehnert H; Marquardt JU; Ungefroren H
    Cancers (Basel); 2021 Sep; 13(18):. PubMed ID: 34572891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysregulated miRNAs modulate tumor microenvironment associated signaling networks in pancreatic ductal adenocarcinoma.
    Liu T; Chen Z; Chen W; Evans R; Xu J; Reeves ME; de Vera ME; Wang C
    Precis Clin Med; 2023 Mar; 6(1):pbad004. PubMed ID: 37007745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesenchymal Plasticity Regulated by Prrx1 Drives Aggressive Pancreatic Cancer Biology.
    Feldmann K; Maurer C; Peschke K; Teller S; Schuck K; Steiger K; Engleitner T; Öllinger R; Nomura A; Wirges N; Papargyriou A; Jahan Sarker RS; Ranjan RA; Dantes Z; Weichert W; Rustgi AK; Schmid RM; Rad R; Schneider G; Saur D; Reichert M
    Gastroenterology; 2021 Jan; 160(1):346-361.e24. PubMed ID: 33007300
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zhang Z; Zhang H; Liao X; Tsai HI
    Front Cell Dev Biol; 2023; 11():1147676. PubMed ID: 37152291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.