These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36408354)

  • 1. A new framework for polynomial approximation to differential equations.
    Brugnano L; Frasca-Caccia G; Iavernaro F; Vespri V
    Adv Comput Math; 2022; 48(6):76. PubMed ID: 36408354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical methods and hypoexponential approximations for gamma distributed delay differential equations.
    Cassidy T; Gillich P; Humphries AR; van Dorp CH
    IMA J Appl Math; 2022 Dec; 87(6):1043-1089. PubMed ID: 36691452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and Solution of Reaction-Diffusion Equations by Using the Quadrature and Singular Convolution Methods.
    Ragb O; Salah M; Matbuly MS; Ersoy H; Civalek O
    Arab J Sci Eng; 2023; 48(3):4045-4065. PubMed ID: 36311480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new multistage technique for approximate analytical solution of nonlinear differential equations.
    Akindeinde SO
    Heliyon; 2020 Oct; 6(10):e05188. PubMed ID: 33088955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full Discretisations for Nonlinear Evolutionary Inequalities Based on Stiffly Accurate Runge-Kutta and
    Gwinner J; Thalhammer M
    Found Comut Math; 2014; 14(5):913-949. PubMed ID: 26029034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel Leal-polynomials for the multi-expansive approximation of nonlinear differential equations.
    Vazquez-Leal H; Sandoval-Hernandez MA; Filobello-Nino U; Huerta-Chua J
    Heliyon; 2020 Apr; 6(4):e03695. PubMed ID: 32322709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical method to integrate some stiff systems.
    Bloch R
    Comput Biomed Res; 1991 Oct; 24(5):420-8. PubMed ID: 1743003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Runge-Kutta neural network for identification of dynamical systems in high accuracy.
    Wang YJ; Lin CT
    IEEE Trans Neural Netw; 1998; 9(2):294-307. PubMed ID: 18252453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical solution of neutral delay differential equations using orthogonal neural network.
    Vinodbhai CD; Dubey S
    Sci Rep; 2023 Feb; 13(1):3164. PubMed ID: 36823259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.
    Hasegawa C; Duffull SB
    J Pharmacokinet Pharmacodyn; 2018 Feb; 45(1):35-47. PubMed ID: 28550375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. k-domain method for the fast calculation of electromagnetic fields propagating in graded-index media.
    Zhong H; Zhang S; Baladron-Zorita O; Shi R; Hellmann C; Wyrowski F
    Opt Express; 2020 Apr; 28(8):11074-11084. PubMed ID: 32403626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A uniformly valid approximation algorithm for nonlinear ordinary singular perturbation problems with boundary layer solutions.
    Cengizci S; Atay MT; Eryılmaz A
    Springerplus; 2016; 5():280. PubMed ID: 27006888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADAPTIVE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS VIA NATURAL EMBEDDINGS AND REJECTION SAMPLING WITH MEMORY.
    Rackauckas C; Nie Q
    Discrete Continuous Dyn Syst Ser B; 2017; 22(7):2731-2761. PubMed ID: 29527134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaotic vibrations of size-dependent flexible rectangular plates.
    Krysko VA; Awrejcewicz J; Papkova IV; Krysko VA
    Chaos; 2021 Apr; 31(4):043119. PubMed ID: 34251257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
    Gómez Pueyo A; Marques MAL; Rubio A; Castro A
    J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation Study on Effects of Order and Step Size of Runge-Kutta Methods that Solve Contagious Disease and Tumor Models.
    Wang Z; Wang Q; Klinke DJ
    J Comput Sci Syst Biol; 2016 Sep; 9(5):163-172. PubMed ID: 28220053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Runge-Kutta approximation for
    Rieder A; Sayas FJ; Melenk JM
    SN Partial Differ Equ Appl; 2020; 1(6):49. PubMed ID: 33458696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-rank Parareal: a low-rank parallel-in-time integrator.
    Carrel B; Gander MJ; Vandereycken B
    BIT Numer Math; 2023; 63(1):13. PubMed ID: 36756608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.