These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 36408911)

  • 1. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting.
    Hayat A; Sohail M; Ali H; Taha TA; Qazi HIA; Ur Rahman N; Ajmal Z; Kalam A; Al-Sehemi AG; Wageh S; Amin MA; Palamanit A; Nawawi WI; Newair EF; Orooji Y
    Chem Rec; 2023 Feb; 23(2):e202200149. PubMed ID: 36408911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wood-Structured Nanomaterials as Highly Efficient, Self-Standing Electrocatalysts for Water Splitting.
    Huang J; Shi Z; Mao C; Yang G; Chen Y
    Small; 2024 Oct; 20(40):e2402511. PubMed ID: 38837861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives.
    Li S; Li E; An X; Hao X; Jiang Z; Guan G
    Nanoscale; 2021 Aug; 13(30):12788-12817. PubMed ID: 34477767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metal-free hydrogen evolution catalysts for water splitting.
    Zou X; Zhang Y
    Chem Soc Rev; 2015 Aug; 44(15):5148-80. PubMed ID: 25886650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Value addition of MXenes as photo-/electrocatalysts in water splitting for sustainable hydrogen production.
    Pandey S; Oh Y; Ghimire M; Son JW; Lee M; Jun Y
    Chem Commun (Camb); 2024 Aug; 60(67):8789-8805. PubMed ID: 39081173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Electrodeposition on Bubbles: An Effective Strategy toward Porous Electrocatalysts for Green Hydrogen Cycling.
    Jiang H; Sun Y; You B
    Acc Chem Res; 2023 Jun; 56(12):1421-1432. PubMed ID: 37229761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Microwave Annealing Synthesizes Highly Crystalline Nanostructures for (Photo)electrocatalytic Water Splitting.
    Zhang H; Lee JS
    Acc Chem Res; 2019 Nov; 52(11):3132-3142. PubMed ID: 31603645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green Hydrogen Production by Low-Temperature Membrane-Engineered Water Electrolyzers, and Regenerative Fuel Cells.
    Bodard A; Chen Z; ELJarray O; Zhang G
    Small Methods; 2024 Sep; ():e2400574. PubMed ID: 39285832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects.
    Yu ZY; Duan Y; Feng XY; Yu X; Gao MR; Yu SH
    Adv Mater; 2021 Aug; 33(31):e2007100. PubMed ID: 34117808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review.
    Bodhankar PM; Sarawade PB; Kumar P; Vinu A; Kulkarni AP; Lokhande CD; Dhawale DS
    Small; 2022 May; 18(21):e2107572. PubMed ID: 35285140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts.
    Raveendran A; Chandran M; Dhanusuraman R
    RSC Adv; 2023 Jan; 13(6):3843-3876. PubMed ID: 36756592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives.
    Lakhan MN; Hanan A; Hussain A; Ali Soomro I; Wang Y; Ahmed M; Aftab U; Sun H; Arandiyan H
    Chem Commun (Camb); 2024 May; 60(39):5104-5135. PubMed ID: 38625567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review.
    Jayabharathi J; Karthikeyan B; Vishnu B; Sriram S
    Phys Chem Chem Phys; 2023 Mar; 25(13):8992-9019. PubMed ID: 36928479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting.
    Quan L; Jiang H; Mei G; Sun Y; You B
    Chem Rev; 2024 Apr; 124(7):3694-3812. PubMed ID: 38517093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects.
    Jawhari AH; Hasan N
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts.
    Chang H; Liang Z; Wang L; Wang C
    Nanoscale; 2022 Apr; 14(15):5639-5656. PubMed ID: 35333268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts.
    Zhang J; Chen G; Müllen K; Feng X
    Adv Mater; 2018 Jul; ():e1800528. PubMed ID: 30043531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.