These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A fast, robust algorithm for power line interference cancellation in neural recording. Keshtkaran MR; Yang Z J Neural Eng; 2014 Apr; 11(2):026017. PubMed ID: 24658388 [TBL] [Abstract][Full Text] [Related]
4. [An Adaptive Method for Detecting and Removing EEG Noise]. Yuan SN; Li RW; Zhu ZF; Ma SC; Niu HD; Ye JL; Zhang X Zhongguo Yi Liao Qi Xie Za Zhi; 2022 May; 46(3):248-253. PubMed ID: 35678430 [TBL] [Abstract][Full Text] [Related]
5. DeepSeg: Deep Segmental Denoising Neural Network for Seismic Data. Iqbal N IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3397-3404. PubMed ID: 36150003 [TBL] [Abstract][Full Text] [Related]
6. EEG noise cancellation by a subspace method based on wavelet decomposition. Olkkonen H; Pesola P; Olkkonen J; Valjakka A; Tuomisto L Med Sci Monit; 2002 Nov; 8(11):MT199-204. PubMed ID: 12444387 [TBL] [Abstract][Full Text] [Related]
7. EEG adaptive noise cancellation using information theoretic approach. Darroudi A; Parchami J; Razavi MK; Sarbisheie G Biomed Mater Eng; 2017; 28(4):325-338. PubMed ID: 28869426 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning Network for Multiuser Detection in Satellite Mobile Communication System. Qing Yang G; Shuang W; Ya-Ru H Comput Intell Neurosci; 2019; 2019():8613639. PubMed ID: 30949201 [TBL] [Abstract][Full Text] [Related]
9. Fast and robust Block-Sparse Bayesian learning for EEG source imaging. Ojeda A; Kreutz-Delgado K; Mullen T Neuroimage; 2018 Jul; 174():449-462. PubMed ID: 29596978 [TBL] [Abstract][Full Text] [Related]
11. Fast reconstruction of EEG signal compression sensing based on deep learning. Du X; Liang K; Lv Y; Qiu S Sci Rep; 2024 Mar; 14(1):5087. PubMed ID: 38429300 [TBL] [Abstract][Full Text] [Related]
12. Visual evoked potential estimation by adaptive noise cancellation with neural-network-based fuzzy inference system. Zeng Y; Zhang J; Yin H; Pan Y J Med Eng Technol; 2007; 31(3):185-90. PubMed ID: 17454407 [TBL] [Abstract][Full Text] [Related]
13. Deep ANC: A deep learning approach to active noise control. Zhang H; Wang D Neural Netw; 2021 Sep; 141():1-10. PubMed ID: 33839375 [TBL] [Abstract][Full Text] [Related]
14. EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network. Wang B; Deng F; Jiang P Comput Biol Med; 2024 Jul; 177():108626. PubMed ID: 38810475 [TBL] [Abstract][Full Text] [Related]
15. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems. Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721 [TBL] [Abstract][Full Text] [Related]
16. Application of adaptive digital signal processing to speech enhancement for the hearing impaired. Chabries DM; Christiansen RW; Brey RH; Robinette MS; Harris RW J Rehabil Res Dev; 1987; 24(4):65-74. PubMed ID: 3430391 [TBL] [Abstract][Full Text] [Related]
17. A review of critical challenges in MI-BCI: From conventional to deep learning methods. Khademi Z; Ebrahimi F; Kordy HM J Neurosci Methods; 2023 Jan; 383():109736. PubMed ID: 36349568 [TBL] [Abstract][Full Text] [Related]
19. Review on Epileptic Seizure Prediction: Machine Learning and Deep Learning Approaches. Natu M; Bachute M; Gite S; Kotecha K; Vidyarthi A Comput Math Methods Med; 2022; 2022():7751263. PubMed ID: 35096136 [TBL] [Abstract][Full Text] [Related]
20. Comparison of CT noise reduction performances with deep learning-based, conventional, and combined denoising algorithms. Balogh ZA; Janos Kis B Med Eng Phys; 2022 Nov; 109():103897. PubMed ID: 36371081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]