These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36409776)

  • 1. Deep reinforcement learning for optimal experimental design in biology.
    Treloar NJ; Braniff N; Ingalls B; Barnes CP
    PLoS Comput Biol; 2022 Nov; 18(11):e1010695. PubMed ID: 36409776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters.
    Sun S; Liu C; Zhu Y; He H; Xiao S; Wen J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement Learning with Side Information for the Uncertainties.
    Yang J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning, reinforcement learning, and world models.
    Matsuo Y; LeCun Y; Sahani M; Precup D; Silver D; Sugiyama M; Uchibe E; Morimoto J
    Neural Netw; 2022 Aug; 152():267-275. PubMed ID: 35569196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reinforcement learning model to inform optimal decision paths for HIV elimination.
    Khatami SN; Gopalappa C
    Math Biosci Eng; 2021 Sep; 18(6):7666-7684. PubMed ID: 34814269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture.
    Mitsopoulos K; Somers S; Schooler J; Lebiere C; Pirolli P; Thomson R
    Top Cogn Sci; 2022 Oct; 14(4):756-779. PubMed ID: 34467649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified analysis of value-function-based reinforcement- learning algorithms.
    Szepesvári C; Littman ML
    Neural Comput; 1999 Nov; 11(8):2017-59. PubMed ID: 10578043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multitask Learning and Reinforcement Learning for Personalized Dialog Generation: An Empirical Study.
    Yang M; Huang W; Tu W; Qu Q; Shen Y; Lei K
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):49-62. PubMed ID: 32149657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inference-Based Posteriori Parameter Distribution Optimization.
    Wang X; Li T; Cheng Y; Chen CLP
    IEEE Trans Cybern; 2022 May; 52(5):3006-3017. PubMed ID: 33027029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meta-learning in reinforcement learning.
    Schweighofer N; Doya K
    Neural Netw; 2003 Jan; 16(1):5-9. PubMed ID: 12576101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep reinforcement learning for the control of microbial co-cultures in bioreactors.
    Treloar NJ; Fedorec AJH; Ingalls B; Barnes CP
    PLoS Comput Biol; 2020 Apr; 16(4):e1007783. PubMed ID: 32275710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.
    Mahmoudi B; Pohlmeyer EA; Prins NW; Geng S; Sanchez JC
    J Neural Eng; 2013 Dec; 10(6):066005. PubMed ID: 24100047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IoT-Based Reinforcement Learning Using Probabilistic Model for Determining Extensive Exploration through Computational Intelligence for Next-Generation Techniques.
    Tiwari PK; Singh P; Rajagopal NK; Deepa K; Gulavani S; Verma A; Kumar YP
    Comput Intell Neurosci; 2023; 2023():5113417. PubMed ID: 37854640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proof of concept reinforcement learning based tool for non parametric population pharmacokinetics workflow optimization.
    Otalvaro JD; Yamada WM; Hernandez AM; Zuluaga AF; Chen R; Neely MN
    J Pharmacokinet Pharmacodyn; 2023 Feb; 50(1):33-43. PubMed ID: 36478350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.