BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 36409792)

  • 1. NRF2 and Diabetes: The Good, the Bad, and the Complex.
    Dodson M; Shakya A; Anandhan A; Chen J; Garcia JGN; Zhang DD
    Diabetes; 2022 Dec; 71(12):2463-2476. PubMed ID: 36409792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combating oxidative stress in diabetic complications with Nrf2 activators: how much is too much?
    Tan SM; de Haan JB
    Redox Rep; 2014 May; 19(3):107-17. PubMed ID: 24559141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of redox modulating NRF2 activators on chronic kidney disease.
    Choi BH; Kang KS; Kwak MK
    Molecules; 2014 Aug; 19(8):12727-59. PubMed ID: 25140450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intricacies of NRF2 regulation in cancer.
    Schmidlin CJ; Shakya A; Dodson M; Chapman E; Zhang DD
    Semin Cancer Biol; 2021 Nov; 76():110-119. PubMed ID: 34020028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells.
    Narasimhan M; Patel D; Vedpathak D; Rathinam M; Henderson G; Mahimainathan L
    PLoS One; 2012; 7(12):e51111. PubMed ID: 23236440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pivotal role of nuclear factor erythroid 2-related factor 2 in diabetes-induced endothelial dysfunction.
    Karan A; Bhakkiyalakshmi E; Jayasuriya R; Sarada DVL; Ramkumar KM
    Pharmacol Res; 2020 Mar; 153():104601. PubMed ID: 31838079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells.
    Panieri E; Saso L
    Antioxid Redox Signal; 2021 Jun; 34(18):1428-1483. PubMed ID: 33403898
    [No Abstract]   [Full Text] [Related]  

  • 8. The Keap1-Nrf2 system prevents onset of diabetes mellitus.
    Uruno A; Furusawa Y; Yagishita Y; Fukutomi T; Muramatsu H; Negishi T; Sugawara A; Kensler TW; Yamamoto M
    Mol Cell Biol; 2013 Aug; 33(15):2996-3010. PubMed ID: 23716596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulation of Nrf2/Keap1 Redox Pathway in Diabetes Affects Multipotency of Stromal Cells.
    Rabbani PS; Soares MA; Hameedi SG; Kadle RL; Mubasher A; Kowzun M; Ceradini DJ
    Diabetes; 2019 Jan; 68(1):141-155. PubMed ID: 30352880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of transcription factor nuclear factor-erythroid 2 (NF-E2) p45-related factor-2 (Nrf2) leads to dysregulation of immune functions, redox homeostasis, and intracellular signaling in dendritic cells.
    Yeang HXA; Hamdam JM; Al-Huseini LMA; Sethu S; Djouhri L; Walsh J; Kitteringham N; Park BK; Goldring CE; Sathish JG
    J Biol Chem; 2012 Mar; 287(13):10556-10564. PubMed ID: 22311972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The emerging role of redox-sensitive Nrf2-Keap1 pathway in diabetes.
    Bhakkiyalakshmi E; Sireesh D; Rajaguru P; Paulmurugan R; Ramkumar KM
    Pharmacol Res; 2015 Jan; 91():104-14. PubMed ID: 25447793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nrf2 Activation Protects Mouse Beta Cells from Glucolipotoxicity by Restoring Mitochondrial Function and Physiological Redox Balance.
    Schultheis J; Beckmann D; Mulac D; Müller L; Esselen M; Düfer M
    Oxid Med Cell Longev; 2019; 2019():7518510. PubMed ID: 31827698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome.
    Patel B; Mann GE; Chapple SJ
    Free Radic Biol Med; 2018 Jul; 122():150-160. PubMed ID: 29427794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Status and Challenges of NRF2 as a Potential Therapeutic Target for Diabetic Cardiomyopathy.
    Ge ZD; Lian Q; Mao X; Xia Z
    Int Heart J; 2019 May; 60(3):512-520. PubMed ID: 30971629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sepiapterin alleviates impaired gastric nNOS function in spontaneous diabetic female rodents through NRF2 mRNA turnover and miRNA biogenesis pathway.
    Gangula PR; Challagundla KB; Ravella K; Mukhopadhyay S; Chinnathambi V; Mittal MK; Sekhar KR; Sampath C
    Am J Physiol Gastrointest Liver Physiol; 2018 Dec; 315(6):G980-G990. PubMed ID: 30285465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis.
    Abrescia P; Treppiccione L; Rossi M; Bergamo P
    Prog Lipid Res; 2020 Nov; 80():101066. PubMed ID: 32979455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression.
    Nezu M; Suzuki N; Yamamoto M
    Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dark side of NRF2 in arsenic carcinogenesis.
    Dodson M; Chen J; Shakya A; Anandhan A; Zhang DD
    Adv Pharmacol; 2023; 96():47-69. PubMed ID: 36858779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.
    Tebay LE; Robertson H; Durant ST; Vitale SR; Penning TM; Dinkova-Kostova AT; Hayes JD
    Free Radic Biol Med; 2015 Nov; 88(Pt B):108-146. PubMed ID: 26122708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired redox signaling and antioxidant gene expression in endothelial cells in diabetes: a role for mitochondria and the nuclear factor-E2-related factor 2-Kelch-like ECH-associated protein 1 defense pathway.
    Cheng X; Siow RC; Mann GE
    Antioxid Redox Signal; 2011 Feb; 14(3):469-87. PubMed ID: 20524845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.