These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36409887)

  • 1. Titin force in muscle cells alters lattice order, thick and thin filament protein formation.
    Hessel AL; Ma W; Mazara N; Rice PE; Nissen D; Gong H; Kuehn M; Irving T; Linke WA
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2209441119. PubMed ID: 36409887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension.
    Irving T; Wu Y; Bekyarova T; Farman GP; Fukuda N; Granzier H
    Biophys J; 2011 Mar; 100(6):1499-508. PubMed ID: 21402032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity.
    Mijailovich SM; Stojanovic B; Nedic D; Svicevic M; Geeves MA; Irving TC; Granzier HL
    J Gen Physiol; 2019 May; 151(5):680-704. PubMed ID: 30948421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of titin in eccentric muscle contraction.
    Herzog W
    J Exp Biol; 2014 Aug; 217(Pt 16):2825-33. PubMed ID: 25122914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-dependent inhibition of in vitro thin-filament motility by native titin.
    Kellermayer MS; Granzier HL
    FEBS Lett; 1996 Feb; 380(3):281-6. PubMed ID: 8601441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is titin a 'winding filament'? A new twist on muscle contraction.
    Nishikawa KC; Monroy JA; Uyeno TE; Yeo SH; Pai DK; Lindstedt SL
    Proc Biol Sci; 2012 Mar; 279(1730):981-90. PubMed ID: 21900329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The titin A-band rod domain is dispensable for initial thick filament assembly in zebrafish.
    Myhre JL; Hills JA; Prill K; Wohlgemuth SL; Pilgrim DB
    Dev Biol; 2014 Mar; 387(1):93-108. PubMed ID: 24370452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titin Gene and Protein Functions in Passive and Active Muscle.
    Linke WA
    Annu Rev Physiol; 2018 Feb; 80():389-411. PubMed ID: 29131758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titin stiffness modifies the force-generating region of muscle sarcomeres.
    Li Y; Lang P; Linke WA
    Sci Rep; 2016 Apr; 6():24492. PubMed ID: 27079135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles.
    Schueder F; Mangeol P; Chan EH; Rees R; Schünemann J; Jungmann R; Görlich D; Schnorrer F
    Elife; 2023 Jan; 12():. PubMed ID: 36645127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Titin activates myosin filaments in skeletal muscle by switching from an extensible spring to a mechanical rectifier.
    Squarci C; Bianco P; Reconditi M; Pertici I; Caremani M; Narayanan T; Horváth ÁI; Málnási-Csizmadia A; Linari M; Lombardi V; Piazzesi G
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2219346120. PubMed ID: 36812205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titin force is enhanced in actively stretched skeletal muscle.
    Powers K; Schappacher-Tilp G; Jinha A; Leonard T; Nishikawa K; Herzog W
    J Exp Biol; 2014 Oct; 217(Pt 20):3629-36. PubMed ID: 25147246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction.
    Månsson A
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low-cost 2-D sarcomere model to demonstrate titin-related mechanisms for force production.
    Baptista de Oliveira Medeiros H; de Brito Fontana H; Herzog W
    Adv Physiol Educ; 2024 Mar; 48(1):92-96. PubMed ID: 38059284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure.
    Linke WA; Rudy DE; Centner T; Gautel M; Witt C; Labeit S; Gregorio CC
    J Cell Biol; 1999 Aug; 146(3):631-44. PubMed ID: 10444071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence of thick filament structure in relaxed mammalian skeletal muscle on temperature and interfilament spacing.
    Caremani M; Fusi L; Linari M; Reconditi M; Piazzesi G; Irving TC; Narayanan T; Irving M; Lombardi V; Brunello E
    J Gen Physiol; 2021 Mar; 153(3):. PubMed ID: 33416833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel three-filament model of force generation in eccentric contraction of skeletal muscles.
    Schappacher-Tilp G; Leonard T; Desch G; Herzog W
    PLoS One; 2015; 10(3):e0117634. PubMed ID: 25816319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titins: giant proteins in charge of muscle ultrastructure and elasticity.
    Labeit S; Kolmerer B
    Science; 1995 Oct; 270(5234):293-6. PubMed ID: 7569978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.