These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36409985)

  • 1. Same Colors for Different Functions: Implications for the Evolution of Carotenoid-Based Ornamentation.
    Cardoso GC; Mota PG
    Am Nat; 2022 Dec; 200(6):E237-E247. PubMed ID: 36409985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.
    McGraw KJ; Toomey MB
    Physiol Biochem Zool; 2010; 83(1):97-109. PubMed ID: 19929687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of carotenoid coloration in estrildid finches: a biochemical analysis.
    McGraw KJ; Schuetz JG
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Sep; 139(1):45-51. PubMed ID: 15364287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis).
    McGraw KJ; Hill GE; Stradi R; Parker RS
    Physiol Biochem Zool; 2001; 74(6):843-52. PubMed ID: 11731975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carotenoid-based ornaments of female and male American goldfinches (Spinus tristis) show sex-specific correlations with immune function and metabolic rate.
    Kelly RJ; Murphy TG; Tarvin KA; Burness G
    Physiol Biochem Zool; 2012; 85(4):348-63. PubMed ID: 22705485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary carotenoids predict plumage coloration in wild house finches.
    Hill GE; Inouye CY; Montgomerie R
    Proc Biol Sci; 2002 Jun; 269(1496):1119-24. PubMed ID: 12061954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary innovation and diversification of carotenoid-based pigmentation in finches.
    Ligon RA; Simpson RK; Mason NA; Hill GE; McGraw KJ
    Evolution; 2016 Dec; 70(12):2839-2852. PubMed ID: 27757952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to reduce the costs of ornaments without reducing their effectiveness? An example of a mechanism from carotenoid-based plumage.
    Surmacki A; Ragan A; Kosiński Z; Tobółka M; Podkowa P
    Behav Ecol Sociobiol; 2016; 70():695-700. PubMed ID: 27194821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoids, immunocompetence, and the information content of sexual colors: an experimental test.
    McGraw KJ; Ardia DR
    Am Nat; 2003 Dec; 162(6):704-12. PubMed ID: 14737708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of female carotenoid coloration by sexual constraint in Carduelis finches.
    Cardoso GC; Mota PG
    BMC Evol Biol; 2010 Mar; 10():82. PubMed ID: 20334705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructures amplify carotenoid plumage signals in tanagers.
    McCoy DE; Shultz AJ; Vidoudez C; van der Heide E; Dall JE; Trauger SA; Haig D
    Sci Rep; 2021 Apr; 11(1):8582. PubMed ID: 33883641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches.
    Hill GE; Hood WR; Huggins K
    J Exp Biol; 2009 Apr; 212(Pt 8):1225-33. PubMed ID: 19329755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assortative mating by carotenoid-based plumage colour: a quality indicator in American goldfinches, Carduelis tristis.
    MacDougall AK; Montgomerie R
    Naturwissenschaften; 2003 Oct; 90(10):464-7. PubMed ID: 14564406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genetic mechanism for sexual dichromatism in birds.
    Gazda MA; Araújo PM; Lopes RJ; Toomey MB; Andrade P; Afonso S; Marques C; Nunes L; Pereira P; Trigo S; Hill GE; Corbo JC; Carneiro M
    Science; 2020 Jun; 368(6496):1270-1274. PubMed ID: 32527835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential accumulation and pigmenting ability of dietary carotenoids in colorful finches.
    McGraw KJ; Hill GE; Navara KJ; Parker RS
    Physiol Biochem Zool; 2004; 77(3):484-91. PubMed ID: 15286921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific carotenoid pigments in the diet and a bit of oxidative stress in the recipe for producing red carotenoid-based signals.
    García-de Blas E; Mateo R; Alonso-Alvarez C
    PeerJ; 2016; 4():e2237. PubMed ID: 27635308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid coloration in greenfinches is individually consistent irrespective of foraging ability.
    Karu U; Saks L; Hõrak P
    Physiol Biochem Zool; 2007; 80(6):663-70. PubMed ID: 17910002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing the resource trade-off hypothesis for carotenoid-based signal honesty using genetic variants of the domestic canary.
    Koch RE; Staley M; Kavazis AN; Hasselquist D; Toomey MB; Hill GE
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30877227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting carotenoid from structural components of carotenoid-based coloration: a field experiment with great tits (Parus major).
    Jacot A; Romero-Diaz C; Tschirren B; Richner H; Fitze PS
    Am Nat; 2010 Jul; 176(1):55-62. PubMed ID: 20470031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interspecific variation in dietary carotenoid assimilation in birds: links to phylogeny and color ornamentation.
    McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Oct; 142(2):245-50. PubMed ID: 16129640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.