These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36410097)

  • 1. Target-AMP: Computational prediction of antimicrobial peptides by coupling sequential information with evolutionary profile.
    Jan A; Hayat M; Wedyan M; Alturki R; Gazzawe F; Ali H; Alarfaj FK
    Comput Biol Med; 2022 Dec; 151(Pt A):106311. PubMed ID: 36410097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IAMPE: NMR-Assisted Computational Prediction of Antimicrobial Peptides.
    Kavousi K; Bagheri M; Behrouzi S; Vafadar S; Atanaki FF; Lotfabadi BT; Ariaeenejad S; Shockravi A; Moosavi-Movahedi AA
    J Chem Inf Model; 2020 Oct; 60(10):4691-4701. PubMed ID: 32946226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides.
    Wan Y; Wang Z; Lee TY
    BMC Bioinformatics; 2021 May; 22(1):286. PubMed ID: 34051755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning-enabled predictive modeling to precisely identify the antimicrobial peptides.
    Wani MA; Garg P; Roy KK
    Med Biol Eng Comput; 2021 Nov; 59(11-12):2397-2408. PubMed ID: 34632545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAMP: a useful resource for research on antimicrobial peptides.
    Thomas S; Karnik S; Barai RS; Jayaraman VK; Idicula-Thomas S
    Nucleic Acids Res; 2010 Jan; 38(Database issue):D774-80. PubMed ID: 19923233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Krein support vector machine classification of antimicrobial peptides.
    Redshaw J; Ting DSJ; Brown A; Hirst JD; Gärtner T
    Digit Discov; 2023 Apr; 2(2):502-511. PubMed ID: 37065679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou's general PseAAC.
    Meher PK; Sahu TK; Saini V; Rao AR
    Sci Rep; 2017 Feb; 7():42362. PubMed ID: 28205576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Prediction of Antimicrobial Peptides.
    Wang G; Vaisman II; van Hoek ML
    Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting antimicrobial peptides by exploring the mutual information of their sequences.
    Tripathi V; Tripathi P
    J Biomol Struct Dyn; 2020 Oct; 38(17):5037-5043. PubMed ID: 31760879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial Peptide Combination Can Hinder Resistance Evolution.
    Maron B; Rolff J; Friedman J; Hayouka Z
    Microbiol Spectr; 2022 Aug; 10(4):e0097322. PubMed ID: 35862981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CalcAMP: A New Machine Learning Model for the Accurate Prediction of Antimicrobial Activity of Peptides.
    Bournez C; Riool M; de Boer L; Cordfunke RA; de Best L; van Leeuwen R; Drijfhout JW; Zaat SAJ; van Westen GJP
    Antibiotics (Basel); 2023 Apr; 12(4):. PubMed ID: 37107088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and identification of antimicrobial peptides with different functional activities.
    Chung CR; Kuo TR; Wu LC; Lee TY; Horng JT
    Brief Bioinform; 2019 Jun; ():. PubMed ID: 31155657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress in the development of antimicrobial peptide prediction tools.
    Ao C; Zhang Y; Li D; Zhao Y; Zou Q
    Curr Protein Pept Sci; 2020 Jan; ():. PubMed ID: 31957609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An advanced approach to identify antimicrobial peptides and their function types for penaeus through machine learning strategies.
    Lin Y; Cai Y; Liu J; Lin C; Liu X
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):291. PubMed ID: 31182007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.