These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36410302)

  • 1. Ferrochrome slag: A critical review of its properties, environmental issues and sustainable utilization.
    Das SK; Tripathi AK; Kandi SK; Mustakim SM; Bhoi B; Rajput P
    J Environ Manage; 2023 Jan; 326(Pt A):116674. PubMed ID: 36410302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of ferrochrome wastes such as ferrochrome ash and ferrochrome slag in concrete manufacturing.
    Acharya PK; Patro SK
    Waste Manag Res; 2016 Aug; 34(8):764-74. PubMed ID: 27357563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of geopolymer mortars containing waste ferrochrome slag and fly ash for sustainable green building.
    Koçyiğit Ş
    Sci Rep; 2024 Jun; 14(1):14606. PubMed ID: 38918546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental impact of ferrochrome slag in road construction.
    Lind BB; Fällman AM; Larsson LB
    Waste Manag; 2001; 21(3):255-64. PubMed ID: 11280517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium recovery from ferrochrome slag: kinetics and possible use in a circular economy.
    Moyo LB; Simate GS; Mamvura TA
    Heliyon; 2022 Dec; 8(12):e12176. PubMed ID: 36578389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders.
    Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X
    Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and Hydration Mechanisms of Low Carbon Ferrochrome Slag-Granulated Blast Furnace Slag Composite Cementitious Materials.
    Ren C; Li K; Wang Y; Li Y; Tong J; Cai J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solidification of chromium-containing sludge with attapulgite combined alkali slag.
    Lin H; Zeng L; Zhang P; Jiao B; Shiau Y; Li D
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13580-13591. PubMed ID: 34595712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Utilization of Alkali-Activated Lead-Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization.
    Yu L; Fang L; Zhang P; Zhao S; Jiao B; Li D
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes.
    Ahmed HU; Mohammed AS; Mohammed AA; Faraj RH
    PLoS One; 2021; 16(6):e0253006. PubMed ID: 34125869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient immobilization and utilization of chromite ore processing residue via hydrothermally constructing spinel phase Fe
    Lan Y; Zhang L; Li X; Liu W; Su X; Lin Z
    Sci Total Environ; 2022 Mar; 813():152637. PubMed ID: 34963612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical, durability properties, and environmental assessment of geopolymer mortars containing waste foundry sand.
    Sabour MR; Derhamjani G; Akbari M
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):24322-24333. PubMed ID: 34825325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.
    Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D
    Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste solidification/stabilization of lead-zinc slag by utilizing fly ash based geopolymers.
    Li S; Huang X; Muhammad F; Yu L; Xia M; Zhao J; Jiao B; Shiau Y; Li D
    RSC Adv; 2018 Sep; 8(57):32956-32965. PubMed ID: 35547705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration.
    Bansal N; Coetzee JJ; Chirwa EMN
    Ecotoxicol Environ Saf; 2019 May; 172():281-289. PubMed ID: 30716662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation, utilization, and environmental impact of ladle furnace slag: A minor review.
    Wu L; Li H; Mei H; Rao L; Wang H; Lv N
    Sci Total Environ; 2023 Oct; 895():165070. PubMed ID: 37364829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of ambient cured geopolymer binders based on brick waste and processed glass waste.
    Dadsetan S; Siad H; Lachemi M; Mahmoodi O; Sahmaran M
    Environ Sci Pollut Res Int; 2022 Nov; 29(53):80755-80774. PubMed ID: 35727515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on combined technology of glutathione reduction and alkali solidification of chromium-containing sludge.
    Zeng L; Zhang P; Li J; Yu Q; Zheng Y; Li D
    Ecotoxicol Environ Saf; 2022 Dec; 247():114221. PubMed ID: 36288638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Hydration Characteristic of Geopolymer Based on Lead Smelting Slag.
    Yao L; Liu D; Ke Y; Li Y; Wang Z; Fei J; Xu H; Min X
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32316286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the Direct Reduction of Chromite Process as a Clean Ferrochrome Technology.
    Paktunc D; Coumans JP; Carter D; Zagrtdenov N; Duguay D
    ACS Eng Au; 2024 Feb; 4(1):125-138. PubMed ID: 38405365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.