BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36410476)

  • 21. Calibrating UTCI'S comfort assessment scale for three Brazilian cities with different climatic conditions.
    Krüger EL; Silva TJV; da Silveira Hirashima SQ; da Cunha EG; Rosa LA
    Int J Biometeorol; 2021 Sep; 65(9):1463-1472. PubMed ID: 32206912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of human thermal comfort ranges in urban climate of winter cities on the example of Erzurum city.
    Toy S; Kántor N
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1811-1820. PubMed ID: 27796990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of view factors on intra-urban air temperature and thermal comfort variability in a temperate city.
    Yan H; Wu F; Nan X; Han Q; Shao F; Bao Z
    Sci Total Environ; 2022 Oct; 841():156720. PubMed ID: 35716739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semantics of outdoor thermal comfort in religious squares of composite climate: New Delhi, India.
    Manavvi S; Rajasekar E
    Int J Biometeorol; 2020 Feb; 64(2):253-264. PubMed ID: 30919095
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe.
    Urban A; Di Napoli C; Cloke HL; Kyselý J; Pappenberger F; Sera F; Schneider R; Vicedo-Cabrera AM; Acquaotta F; Ragettli MS; Íñiguez C; Tobias A; Indermitte E; Orru H; Jaakkola JJK; Ryti NRI; Pascal M; Huber V; Schneider A; De' Donato F; Michelozzi P; Gasparrini A
    Environ Res; 2021 Jul; 198():111227. PubMed ID: 33974842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Field assessment of winter outdoor 3-D radiant environment and its impact on thermal comfort in a severely cold region.
    Du J; Sun C; Xiao Q; Chen X; Liu J
    Sci Total Environ; 2020 Mar; 709():136175. PubMed ID: 31905593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Spatio-temporal variations and influencing factors of thermal comfort at different elevations.].
    Zhang XY; Jiang C; Sun JX; Zhou MF
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):2808-2818. PubMed ID: 30411555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.
    Moustris K; Tsiros IX; Tseliou A; Nastos P
    Int J Biometeorol; 2018 Jul; 62(7):1265-1274. PubMed ID: 29644432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of urban design on microclimate and thermal comfort outdoors in warm-humid Dar es Salaam, Tanzania.
    Yahia MW; Johansson E; Thorsson S; Lindberg F; Rasmussen MI
    Int J Biometeorol; 2018 Mar; 62(3):373-385. PubMed ID: 28612254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Urban woodland on intensive green roof improved outdoor thermal comfort in subtropical summer.
    Lee LSH; Jim CY
    Int J Biometeorol; 2019 Jul; 63(7):895-909. PubMed ID: 31154507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of sky view factor on outdoor thermal environment and physiological equivalent temperature.
    He X; Miao S; Shen S; Li J; Zhang B; Zhang Z; Chen X
    Int J Biometeorol; 2015 Mar; 59(3):285-97. PubMed ID: 24842520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An anisotropic parameterization scheme for longwave irradiance and its impact on radiant load in urban outdoor settings.
    Wallenberg N; Holmer B; Lindberg F; Rayner D
    Int J Biometeorol; 2023 Apr; 67(4):633-647. PubMed ID: 36826592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal variations on infrared temperature as a thermal comfort indicator for cattle under agroforestry systems.
    Karvatte N; Miyagi ES; Carvalho de Oliveira C; Mastelaro AP; de Aguiar Coelho F; Bayma G; Bungenstab DJ; Alves FV
    J Therm Biol; 2021 Apr; 97():102871. PubMed ID: 33863435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of shade on outdoor thermal comfort-a seasonal field study in Tempe, Arizona.
    Middel A; Selover N; Hagen B; Chhetri N
    Int J Biometeorol; 2016 Dec; 60(12):1849-1861. PubMed ID: 27192997
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Outdoor comfort study in Rio de Janeiro: site-related context effects on reported thermal sensation.
    Krüger E; Drach P; Broede P
    Int J Biometeorol; 2017 Mar; 61(3):463-475. PubMed ID: 27568191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validating an advanced smartphone application for thermal advising in cold environments.
    Eggeling J; Rydenfält C; Halder A; Toftum J; Nybo L; Kingma B; Gao C
    Int J Biometeorol; 2023 Dec; 67(12):1957-1964. PubMed ID: 37833565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Outdoor thermal comfort during winter in China's cold regions: A comparative study.
    An L; Hong B; Cui X; Geng Y; Ma X
    Sci Total Environ; 2021 May; 768():144464. PubMed ID: 33454480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.
    Brandani G; Napoli M; Massetti L; Petralli M; Orlandini S
    J Environ Qual; 2016 Jan; 45(1):90-7. PubMed ID: 26828164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Outdoor thermal comfort in public space in warm-humid Guayaquil, Ecuador.
    Johansson E; Yahia MW; Arroyo I; Bengs C
    Int J Biometeorol; 2018 Mar; 62(3):387-399. PubMed ID: 28283758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Street Walkability and Thermal Comfort Index (SWTCI): A new assessment tool combining street design measurements and thermal comfort.
    Labdaoui K; Mazouz S; Moeinaddini M; Cools M; Teller J
    Sci Total Environ; 2021 Nov; 795():148663. PubMed ID: 34237537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.