These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36410730)

  • 1. A Molybdenum Polysulfide
    Chen D; Tao D; Ren X; Wen F; Li T; Chen Z; Cao Y; Xu F
    ACS Nano; 2022 Dec; 16(12):20510-20520. PubMed ID: 36410730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Amorphous Molybdenum Polysulfide Cathode for Rechargeable Magnesium Batteries.
    Zhao X; Xu F
    Chemphyschem; 2023 Aug; 24(16):e202300333. PubMed ID: 37345985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Reaction and Fading Mechanism of FeSe
    Tao D; Chen D; Yang H; Xu F
    Chemphyschem; 2022 Aug; 23(15):e202200248. PubMed ID: 35522010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion-Incorporated Mg-Ion Solvation Modulation Enables Fast Magnesium Storage Kinetics of Conversion-Type Cathode Materials.
    Shen Y; Wang Y; Miao Y; Li Q; Zhao X; Shen X
    Adv Mater; 2023 May; 35(19):e2208289. PubMed ID: 36893768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Pyrite Iron Disulfide Cathode with a Copper Current Collector for High-Energy Reversible Magnesium-Ion Storage.
    Shen Y; Zhang Q; Wang Y; Gu L; Zhao X; Shen X
    Adv Mater; 2021 Oct; 33(41):e2103881. PubMed ID: 34436798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mo
    Tao D; Li T; Tang Y; Gui H; Cao Y; Xu F
    ACS Nano; 2024 Feb; ():. PubMed ID: 38334264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic Se-Substitution toward High-Performance CuS
    Wang Z; Zhu Y; Qiao C; Yang S; Jia J; Rafai S; Ma X; Wu S; Ji F; Cao C
    Small; 2019 Oct; 15(42):e1902797. PubMed ID: 31460703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Energy Interlayer-Expanded Copper Sulfide Cathode Material in Non-Corrosive Electrolyte for Rechargeable Magnesium Batteries.
    Shen Y; Wang Y; Miao Y; Yang M; Zhao X; Shen X
    Adv Mater; 2020 Jan; 32(4):e1905524. PubMed ID: 31814193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage.
    Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Feasibility of Practical Mg-S Batteries: Practical Limitations Associated with Metallic Magnesium Anodes.
    Salama M; Attias R; Hirsch B; Yemini R; Gofer Y; Noked M; Aurbach D
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):36910-36917. PubMed ID: 30295459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Preparation of CuCo
    Zhang Q; Hu Y; Wang J; Dai Y; Pan F
    Chemistry; 2021 Sep; 27(54):13568-13574. PubMed ID: 33843077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amorphous Cobalt Polyselenides with Hyperbranched Polymer Additive as High-Capacity Magnesium Storage Cathode Materials Through Cationic and Anionic Co-Redox Mechanism.
    Li T; Ran L; Li H; Zhang D; Xu F
    Small; 2024 Apr; ():e2400903. PubMed ID: 38616776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cuprous Self-Doping Regulated Mesoporous CuS Nanotube Cathode Materials for Rechargeable Magnesium Batteries.
    Du C; Zhu Y; Wang Z; Wang L; Younas W; Ma X; Cao C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35035-35042. PubMed ID: 32667190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbyne polysulfide as a novel cathode material for rechargeable magnesium batteries.
    NuLi Y; Chen Q; Wang W; Wang Y; Yang J; Wang J
    ScientificWorldJournal; 2014; 2014():107918. PubMed ID: 24587704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-Assisted Synthesis of CuS Hierarchical Nanosheets as the Cathode Material for High-Capacity Rechargeable Magnesium Batteries.
    Wang Z; Rafai S; Qiao C; Jia J; Zhu Y; Ma X; Cao C
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7046-7054. PubMed ID: 30667214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage.
    Sun R; Hou S; Luo C; Ji X; Wang L; Mai L; Wang C
    Nano Lett; 2020 May; 20(5):3880-3888. PubMed ID: 32319781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Conjugated Structure on the Magnesium Storage Performance of Dianhydrides.
    Yang H; Xu F
    Chemphyschem; 2021 Jul; 22(14):1455-1460. PubMed ID: 34117706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Self-Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries.
    Abouzari-Lotf E; Azmi R; Li Z; Shakouri S; Chen Z; Zhao-Karger Z; Klyatskaya S; Maibach J; Ruben M; Fichtner M
    ChemSusChem; 2021 Apr; 14(8):1840-1846. PubMed ID: 33646642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries.
    Li L; Lu Y; Zhang Q; Zhao S; Hu Z; Chou SL
    Small; 2021 Mar; 17(9):e1902767. PubMed ID: 31617315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries.
    Inamoto M; Kurihara H; Yajima T
    Materials (Basel); 2013 Oct; 6(10):4514-4522. PubMed ID: 28788344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.