These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36411325)

  • 1. Surface characterization of an ultra-soft contact lens material using an atomic force microscopy nanoindentation method.
    Sharma V; Shi X; Yao G; Pharr GM; Wu JY
    Sci Rep; 2022 Nov; 12(1):20013. PubMed ID: 36411325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state.
    Shi X; Cantu-Crouch D; Sharma V; Pruitt J; Yao G; Fukazawa K; Wu JY; Ishihara K
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111539. PubMed ID: 33387797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of cantilever tip geometry and contact model on AFM elasticity measurement of cells.
    Kulkarni SG; Pérez-Domínguez S; Radmacher M
    J Mol Recognit; 2023 Jul; 36(7):e3018. PubMed ID: 37025035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of specimen thickness on the nanoindentation of hydrogels: measuring the mechanical properties of soft contact lenses.
    Selby A; Maldonado-Codina C; Derby B
    J Mech Behav Biomed Mater; 2014 Jul; 35():144-56. PubMed ID: 24378734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the modulus of silicone hydrogel contact lenses.
    Horst CR; Brodland B; Jones LW; Brodland GW
    Optom Vis Sci; 2012 Oct; 89(10):1468-76. PubMed ID: 22982767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation.
    Zhu Y; Dong Z; Wejinya UC; Jin S; Ye K
    J Biomech; 2011 Sep; 44(13):2356-61. PubMed ID: 21794867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscaled Morphology and Mechanical Properties of a Biomimetic Polymer Surface on a Silicone Hydrogel Contact Lens.
    Shi X; Sharma V; Cantu-Crouch D; Yao G; Fukazawa K; Ishihara K; Wu JY
    Langmuir; 2021 Nov; 37(47):13961-13967. PubMed ID: 34788044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of silicone hydrogel contact lenses based on poly(dimethylsiloxane) dialkanol and hydrophilic polymers.
    Tran NP; Yang MC; Tran-Nguyen PL
    Colloids Surf B Biointerfaces; 2021 Oct; 206():111957. PubMed ID: 34216853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force microscopy nanoindentation kinetics and subsurface visualization of soft inhomogeneous polymer.
    Morozov IA
    Microsc Res Tech; 2021 Sep; 84(9):1959-1966. PubMed ID: 33713508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of modulus of elasticity of silicone hydrogel contact lenses on meibomian glands morphology and function.
    Iqbal A; Thomas R; Mahadevan R
    Clin Exp Optom; 2021 Sep; 104(7):760-766. PubMed ID: 33689628
    [No Abstract]   [Full Text] [Related]  

  • 11. Toward a better modulus at shallow indentations-Enhanced tip and sample characterization for quantitative atomic force microscopy.
    Owen DS
    Microsc Res Tech; 2023 Jan; 86(1):84-96. PubMed ID: 36398794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of texture properties of banana fruit cells with an atomic force microscope: A case study on elastic modulus and stiffness.
    Khodabakhshian R; Naeemi A; Bayati MR
    J Texture Stud; 2021 Jun; 52(3):389-399. PubMed ID: 33675545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFM in peak force mode applied to worn siloxane-hydrogel contact lenses.
    Abadías C; Serés C; Torrent-Burgués J
    Colloids Surf B Biointerfaces; 2015 Apr; 128():61-66. PubMed ID: 25731094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft contact lens surface profile by atomic force microscopy.
    Giraldez MJ; Serra C; Lira M; Real Oliveira ME; Yebra-Pimentel E
    Optom Vis Sci; 2010 Jul; 87(7):E475-81. PubMed ID: 20473237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring the elastic modulus of soft biomaterials using nanoindentation.
    Xu D; Harvey T; Begiristain E; Domínguez C; Sánchez-Abella L; Browne M; Cook RB
    J Mech Behav Biomed Mater; 2022 Sep; 133():105329. PubMed ID: 35753160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes.
    Dokukin ME; Sokolov I
    Langmuir; 2012 Nov; 28(46):16060-71. PubMed ID: 23113608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple microindentation technique for mapping the microscale compliance of soft hydrated materials and tissues.
    Jacot JG; Dianis S; Schnall J; Wong JY
    J Biomed Mater Res A; 2006 Dec; 79(3):485-94. PubMed ID: 16779854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of Water Content With Silicon and Fluorine Contents of Silicone-Hydrogel Contact Lens Materials.
    Dupre TE; Benjamin WJ
    Eye Contact Lens; 2019 Jan; 45(1):23-27. PubMed ID: 29944508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained elastic network modelling: A fast and stable numerical tool to characterize mesenchymal stem cells subjected to AFM nanoindentation measurements.
    Vaiani L; Migliorini E; Cavalcanti-Adam EA; Uva AE; Fiorentino M; Gattullo M; Manghisi VM; Boccaccio A
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111860. PubMed ID: 33579492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.