These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 36411867)
1. Upcycling of Plastic Wastes and Biomass for Sustainable Graphitic Carbon Production: A Critical Review. Weldekidan H; Mohanty AK; Misra M ACS Environ Au; 2022 Nov; 2(6):510-522. PubMed ID: 36411867 [TBL] [Abstract][Full Text] [Related]
2. Recent Progresses in Pyrolysis of Plastic Packaging Wastes and Biomass Materials for Conversion of High-Value Carbons: A Review. Cheng Y; Wang J; Fang C; Du Y; Su J; Chen J; Zhang Y Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674986 [TBL] [Abstract][Full Text] [Related]
3. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. Sivagami K; Kumar KV; Tamizhdurai P; Govindarajan D; Kumar M; Nambi I RSC Adv; 2022 Mar; 12(13):7612-7620. PubMed ID: 35424760 [TBL] [Abstract][Full Text] [Related]
4. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review. Ma C; Kumagai S; Saito Y; Yoshioka T; Huang X; Shao Y; Ran J; Sun L Environ Sci Technol; 2024 Jan; 58(3):1423-1440. PubMed ID: 38197317 [TBL] [Abstract][Full Text] [Related]
5. Recent Advances in Synthesis of Graphite from Agricultural Bio-Waste Material: A Review. Yap YW; Mahmed N; Norizan MN; Abd Rahim SZ; Ahmad Salimi MN; Abdul Razak K; Mohamad IS; Abdullah MMA; Mohamad Yunus MY Materials (Basel); 2023 May; 16(9):. PubMed ID: 37176484 [TBL] [Abstract][Full Text] [Related]
6. Char from the co-pyrolysis of Eucalyptus wood and low-density polyethylene for use as high-quality fuel: Influence of process parameters. Samal B; Vanapalli KR; Dubey BK; Bhattacharya J; Chandra S; Medha I Sci Total Environ; 2021 Nov; 794():148723. PubMed ID: 34217075 [TBL] [Abstract][Full Text] [Related]
7. The synergistic mechanism between coke depositions and gas for H Xu D; Xiong Y; Zhang S; Su Y Waste Manag; 2021 Feb; 121():23-32. PubMed ID: 33341691 [TBL] [Abstract][Full Text] [Related]
8. On the use of plastic precursors for preparation of activated carbons and their evaluation in CO Pérez-Huertas S; Calero M; Ligero A; Pérez A; Terpiłowski K; Martín-Lara MA Waste Manag; 2023 Apr; 161():116-141. PubMed ID: 36878040 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Ryu HW; Kim DH; Jae J; Lam SS; Park ED; Park YK Bioresour Technol; 2020 Aug; 310():123473. PubMed ID: 32389430 [TBL] [Abstract][Full Text] [Related]
10. Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF Yuan X; Cho MK; Lee JG; Choi SW; Lee KB Environ Pollut; 2020 Oct; 265(Pt A):114868. PubMed ID: 32534237 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous production of aromatics-rich bio-oil and carbon nanomaterials from catalytic co-pyrolysis of biomass/plastic wastes and in-line catalytic upgrading of pyrolysis gas. Xu D; Yang S; Su Y; Shi L; Zhang S; Xiong Y Waste Manag; 2021 Feb; 121():95-104. PubMed ID: 33360310 [TBL] [Abstract][Full Text] [Related]
12. Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Harussani MM; Sapuan SM; Rashid U; Khalina A; Ilyas RA Sci Total Environ; 2022 Jan; 803():149911. PubMed ID: 34525745 [TBL] [Abstract][Full Text] [Related]
13. Pyrolysis-catalysis of waste plastic using a nickel-stainless-steel mesh catalyst for high-value carbon products. Zhang Y; Nahil MA; Wu C; Williams PT Environ Technol; 2017 Nov; 38(22):2889-2897. PubMed ID: 28074718 [TBL] [Abstract][Full Text] [Related]
14. Upcycling of PET waste into methane-rich gas and hierarchical porous carbon for high-performance supercapacitor by autogenic pressure pyrolysis and activation. Zhang H; Zhou XL; Shao LM; Lü F; He PJ Sci Total Environ; 2021 Jun; 772():145309. PubMed ID: 33578147 [TBL] [Abstract][Full Text] [Related]
15. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils. Breyer S; Mekhitarian L; Rimez B; Haut B Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835 [TBL] [Abstract][Full Text] [Related]
16. Perspectives on Thermochemical Recycling of End-of-Life Plastic Wastes to Alternative Fuels. Nanda S; Sarker TR; Kang K; Li D; Dalai AK Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444877 [TBL] [Abstract][Full Text] [Related]
17. Pyrolysis and gasification of landfilled plastic wastes with Ni-Mg-La/Al2O3 catalyst. Kaewpengkrow P; Atong D; Sricharoenchaikul V Environ Technol; 2012 Dec; 33(22-24):2489-95. PubMed ID: 23437645 [TBL] [Abstract][Full Text] [Related]
18. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Ansah E; Wang L; Shahbazi A Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928 [TBL] [Abstract][Full Text] [Related]
19. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Selvarajoo A; Wong YL; Khoo KS; Chen WH; Show PL Chemosphere; 2022 May; 294():133671. PubMed ID: 35092753 [TBL] [Abstract][Full Text] [Related]
20. Conversion of plastic waste into fuels: A critical review. Li N; Liu H; Cheng Z; Yan B; Chen G; Wang S J Hazard Mater; 2022 Feb; 424(Pt B):127460. PubMed ID: 34653868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]