These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36412105)

  • 21. Meta-analysis of incidence rate data in the presence of zero events.
    Spittal MJ; Pirkis J; Gurrin LC
    BMC Med Res Methodol; 2015 Apr; 15():42. PubMed ID: 25925169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of including or excluding both-armed zero-event studies on using standard meta-analysis methods for rare event outcome: a simulation study.
    Cheng J; Pullenayegum E; Marshall JK; Iorio A; Thabane L
    BMJ Open; 2016 Aug; 6(8):e010983. PubMed ID: 27531725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ratio of geometric means to analyze continuous outcomes in meta-analysis: comparison to mean differences and ratio of arithmetic means using empiric data and simulation.
    Friedrich JO; Adhikari NK; Beyene J
    Stat Med; 2012 Jul; 31(17):1857-86. PubMed ID: 22438170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selecting the best meta-analytic estimator for evidence-based practice: a simulation study.
    Doi SAR; Furuya-Kanamori L
    Int J Evid Based Healthc; 2020 Mar; 18(1):86-94. PubMed ID: 31764215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy and precision of fixed and random effects in meta-analyses of randomized control trials for continuous outcomes.
    Gnambs T; Schroeders U
    Res Synth Methods; 2024 Jan; 15(1):86-106. PubMed ID: 37751893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clinical heterogeneity in random-effect meta-analysis: Between-study boundary estimate problem.
    Yoneoka D; Henmi M
    Stat Med; 2019 Sep; 38(21):4131-4145. PubMed ID: 31286537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved method for bivariate meta-analysis when within-study correlations are unknown.
    Hong C; D Riley R; Chen Y
    Res Synth Methods; 2018 Mar; 9(1):73-88. PubMed ID: 29055096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. metamedian: An R package for meta-analyzing studies reporting medians.
    McGrath S; Zhao X; Ozturk O; Katzenschlager S; Steele R; Benedetti A
    Res Synth Methods; 2024 Mar; 15(2):332-346. PubMed ID: 38073145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transforming the Model T: random effects meta-analysis with stable weights.
    Malloy MJ; Prendergast LA; Staudte RG
    Stat Med; 2013 May; 32(11):1842-64. PubMed ID: 23097338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A simplification and implementation of random-effects meta-analyses based on the exact distribution of Cochran's Q.
    Preuß M; Ziegler A
    Methods Inf Med; 2014; 53(1):54-61. PubMed ID: 24317521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining multiple imputation and meta-analysis with individual participant data.
    Burgess S; White IR; Resche-Rigon M; Wood AM
    Stat Med; 2013 Nov; 32(26):4499-514. PubMed ID: 23703895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies: a simulation study.
    Petropoulou M; Mavridis D
    Stat Med; 2017 Nov; 36(27):4266-4280. PubMed ID: 28815652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parametric and nonparametric bootstrap methods for meta-analysis.
    Van Den Noortgate W; Onghena P
    Behav Res Methods; 2005 Feb; 37(1):11-22. PubMed ID: 16097340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Meta-analysis of test accuracy studies using imputation for partial reporting of multiple thresholds.
    Ensor J; Deeks JJ; Martin EC; Riley RD
    Res Synth Methods; 2018 Mar; 9(1):100-115. PubMed ID: 29052347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust rank-based meta-analyses for two-sample designs with application to platelet counts of malaria infection data.
    Lang Y; McKean JW; Ozturk O
    Stat Med; 2023 Jul; 42(17):2887-2913. PubMed ID: 37132169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical methodology for estimating the mean difference in a meta-analysis without study-specific variance information.
    Sangnawakij P; Böhning D; Adams S; Stanton M; Holling H
    Stat Med; 2017 Apr; 36(9):1395-1413. PubMed ID: 28168731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A note on the empirical Bayes heterogeneity variance estimator in meta-analysis.
    Sidik K; Jonkman JN
    Stat Med; 2019 Sep; 38(20):3804-3816. PubMed ID: 31209917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparison of Bayesian and frequentist methods in random-effects network meta-analysis of binary data.
    Seide SE; Jensen K; Kieser M
    Res Synth Methods; 2020 May; 11(3):363-378. PubMed ID: 31955519
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of standard deviations and inverse-variance weights from an observed range.
    Walter SD; Rychtář J; Taylor D; Balakrishnan N
    Stat Med; 2022 Jan; 41(2):242-257. PubMed ID: 34747027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bias due to selective inclusion and reporting of outcomes and analyses in systematic reviews of randomised trials of healthcare interventions.
    Page MJ; McKenzie JE; Kirkham J; Dwan K; Kramer S; Green S; Forbes A
    Cochrane Database Syst Rev; 2014 Oct; 2014(10):MR000035. PubMed ID: 25271098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.