BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 36412119)

  • 1. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement.
    Goode RA; Hum JM; Kalwat MA
    Endocrinology; 2022 Nov; 164(1):. PubMed ID: 36412119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Islet Neogenesis Associated Protein (INGAP) induces the differentiation of an adult human pancreatic ductal cell line into insulin-expressing cells through stepwise activation of key transcription factors for embryonic beta cell development.
    Assouline-Thomas B; Ellis D; Petropavlovskaia M; Makhlin J; Ding J; Rosenberg L
    Differentiation; 2015; 90(4-5):77-90. PubMed ID: 26558987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Islet Regeneration: Endogenous and Exogenous Approaches.
    Docherty FM; Sussel L
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33804882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell Heterogeneity and Paracrine Interactions in Human Islet Function: A Perspective Focused in β-Cell Regeneration Strategies.
    Bru-Tari E; Oropeza D; Herrera PL
    Front Endocrinol (Lausanne); 2020; 11():619150. PubMed ID: 33613453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pancreatic islet cell development and regeneration.
    Romer AI; Sussel L
    Curr Opin Endocrinol Diabetes Obes; 2015 Aug; 22(4):255-64. PubMed ID: 26087337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pancreatic beta cells regeneration.
    Zhao H; Zhou B
    Yi Chuan; 2022 May; 44(5):370-382. PubMed ID: 35729695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concise review: pancreas regeneration: recent advances and perspectives.
    Lysy PA; Weir GC; Bonner-Weir S
    Stem Cells Transl Med; 2012 Feb; 1(2):150-9. PubMed ID: 23197762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regenerating pancreatic beta-cells: plasticity of adult pancreatic cells and the feasibility of in-vivo neogenesis.
    Juhl K; Bonner-Weir S; Sharma A
    Curr Opin Organ Transplant; 2010 Feb; 15(1):79-85. PubMed ID: 19907327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the endocrine pancreas and novel strategies for β-cell mass restoration and diabetes therapy.
    Márquez-Aguirre AL; Canales-Aguirre AA; Padilla-Camberos E; Esquivel-Solis H; Díaz-Martínez NE
    Braz J Med Biol Res; 2015 Sep; 48(9):765-76. PubMed ID: 26176316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Beta cell replacement to beta cell regeneration: implications for antidiabetic therapy.
    Liu C; Wu H
    J Diabetes Sci Technol; 2014 Nov; 8(6):1221-6. PubMed ID: 25355714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.
    Ma X; Zhu S
    Acta Biochim Biophys Sin (Shanghai); 2017 Apr; 49(4):289-301. PubMed ID: 28338772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable?
    Tanday N; Tarasov AI; Moffett RC; Flatt PR; Irwin N
    Diabetes Obes Metab; 2024 Jan; 26(1):16-31. PubMed ID: 37845573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lessons from Human Islet Transplantation Inform Stem Cell-Based Approaches in the Treatment of Diabetes.
    Triolo TM; Bellin MD
    Front Endocrinol (Lausanne); 2021; 12():636824. PubMed ID: 33776933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pancreatic β-cell replacement: advances in protocols used for differentiation of pancreatic progenitors to β-like cells.
    Ghani MW; Ye L; Yi Z; Ghani H; Birmani MW; Nawab A; Cun LG; Bin L; Mei X
    Folia Histochem Cytobiol; 2019; 57(3):101-115. PubMed ID: 31396945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging diabetes therapies: Bringing back the β-cells.
    Basile G; Qadir MMF; Mauvais-Jarvis F; Vetere A; Shoba V; Modell AE; Pastori RL; Russ HA; Wagner BK; Dominguez-Bendala J
    Mol Metab; 2022 Jun; 60():101477. PubMed ID: 35331962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic β Cell Regeneration as a Possible Therapy for Diabetes.
    Aguayo-Mazzucato C; Bonner-Weir S
    Cell Metab; 2018 Jan; 27(1):57-67. PubMed ID: 28889951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The progress of pluripotent stem cell-derived pancreatic β-cells regeneration for diabetic therapy.
    Wang X; Gao M; Wang Y; Zhang Y
    Front Endocrinol (Lausanne); 2022; 13():927324. PubMed ID: 35966093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in the Generation of Functional β-cells from Induced Pluripotent Stem Cells As a Cure for Diabetes Mellitus.
    Kalra K; Chandrabose ST; Ramasamy TS; Kasim NHBA
    Curr Drug Targets; 2018; 19(13):1463-1477. PubMed ID: 29874998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced adaptive islet cell identity changes.
    Cigliola V; Thorel F; Chera S; Herrera PL
    Diabetes Obes Metab; 2016 Sep; 18 Suppl 1(Suppl 1):87-96. PubMed ID: 27615136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From cell culture to a cure: pancreatic β-cell replacement strategies for diabetes mellitus.
    Chhoun JM; Voltzke KJ; Firpo MT
    Regen Med; 2012 Sep; 7(5):685-95. PubMed ID: 22954439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.