BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36412169)

  • 1. Distinct mechanisms of CB1 and GABA
    Sitzia G; Abrahao KP; Liput D; Calandra GM; Lovinger DM
    J Physiol; 2023 Jan; 601(1):195-209. PubMed ID: 36412169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Striatal Direct and Indirect Pathway Output Structures Are Differentially Altered in Mouse Models of Huntington's Disease.
    Barry J; Akopian G; Cepeda C; Levine MS
    J Neurosci; 2018 May; 38(20):4678-4694. PubMed ID: 29691329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced striatopallidal gamma-aminobutyric acid (GABA)
    Perez-Rosello T; Gelman S; Tombaugh G; Cachope R; Beaumont V; Surmeier DJ
    Mov Disord; 2019 May; 34(5):684-696. PubMed ID: 30726572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Nigrostriatal Dopamine Release by Striatal GABA
    Lopes EF; Roberts BM; Siddorn RE; Clements MA; Cragg SJ
    J Neurosci; 2019 Feb; 39(6):1058-1065. PubMed ID: 30541909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington's disease.
    Allen KL; Waldvogel HJ; Glass M; Faull RL
    J Chem Neuroanat; 2009 Jul; 37(4):266-81. PubMed ID: 19481011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of unitary synaptic currents generated by indirect and direct pathway neurons of the mouse striatum.
    Jones JA; Peña J; Likhotvorik RI; Garcia-Castañeda BI; Wilson CJ
    J Neurophysiol; 2024 May; 131(5):914-936. PubMed ID: 38596834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABA
    Jurčić N; Er-Raoui G; Airault C; Trouslard J; Wanaverbecq N; Seddik R
    J Physiol; 2019 Jan; 597(2):631-651. PubMed ID: 30418666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic Dopamine D2 Receptors Modulate [
    Jijón-Lorenzo R; Caballero-Florán IH; Recillas-Morales S; Cortés H; Avalos-Fuentes JA; Paz-Bermúdez FJ; Erlij D; Florán B
    Neuroscience; 2018 Feb; 372():74-86. PubMed ID: 29292080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying the enhancement of γ-aminobutyric acid responses in the external globus pallidus of R6/2 Huntington's disease model mice.
    Barry J; Sarafian TA; Watson JB; Cepeda C; Levine MS
    J Neurosci Res; 2020 Nov; 98(11):2349-2356. PubMed ID: 32856336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic GABAB autoreceptor regulation of nicotinic acetylcholine receptor mediated [(3)H]-GABA release from mouse synaptosomes.
    McClure-Begley TD; Grady SR; Marks MJ; Collins AC; Stitzel JA
    Biochem Pharmacol; 2014 Sep; 91(1):87-96. PubMed ID: 24953818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons.
    Chen G; van den Pol AN
    J Neurosci; 1998 Mar; 18(5):1913-22. PubMed ID: 9465016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biphasic modulation of parallel fibre synaptic transmission by co-activation of presynaptic GABAA and GABAB receptors in mice.
    Howell RD; Pugh JR
    J Physiol; 2016 Jul; 594(13):3651-66. PubMed ID: 27061582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAergic neurotransmission in globus pallidus and its involvement in neurologic disorders.
    Chen L; Yung WH
    Sheng Li Xue Bao; 2004 Aug; 56(4):427-35. PubMed ID: 15322674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of cannabinoid receptors in the regulation of neurotransmitter release in the rodent striatum: a combined immunochemical and pharmacological analysis.
    Köfalvi A; Rodrigues RJ; Ledent C; Mackie K; Vizi ES; Cunha RA; Sperlágh B
    J Neurosci; 2005 Mar; 25(11):2874-84. PubMed ID: 15772347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desensitization-resistant and -sensitive GPCR-mediated inhibition of GABA release occurs by Ca2+-dependent and -independent mechanisms at a hypothalamic synapse.
    Pennock RL; Hentges ST
    J Neurophysiol; 2016 Jun; 115(5):2376-88. PubMed ID: 26912590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GABA(B) and group I metabotropic glutamate receptors in the striatopallidal complex in primates.
    Smith Y; Charara A; Hanson JE; Paquet M; Levey AI
    J Anat; 2000 May; 196 ( Pt 4)(Pt 4):555-76. PubMed ID: 10923987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization and pharmacological modulation of GABA-B receptors in the globus pallidus of parkinsonian monkeys.
    Galvan A; Hu X; Smith Y; Wichmann T
    Exp Neurol; 2011 Jun; 229(2):429-39. PubMed ID: 21419765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A) receptors in vivo.
    Paladini CA; Celada P; Tepper JM
    Neuroscience; 1999 Mar; 89(3):799-812. PubMed ID: 10199614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optoactivation of parvalbumin neurons in the spinal dorsal horn evokes GABA release that is regulated by presynaptic GABAB receptors.
    Yang K; Ma R; Wang Q; Jiang P; Li YQ
    Neurosci Lett; 2015 May; 594():55-9. PubMed ID: 25817363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.