These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36412706)

  • 1. Derivative-Free Observability Analysis for Sensor Placement Optimization of Bioinspired Flexible Flapping Wing System.
    Jin B; Xu H; Peng J; Lu K; Lu Y
    Biomimetics (Basel); 2022 Oct; 7(4):. PubMed ID: 36412706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gyroscopic sensing in the wings of the hawkmoth Manduca sexta: the role of sensor location and directional sensitivity.
    Hinson BT; Morgansen KA
    Bioinspir Biomim; 2015 Oct; 10(5):056013. PubMed ID: 26440705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Analysis of a Simple Flexible Wing-Thorax System in Flapping-Wing Insects.
    Cote B; Weston S; Jankauski M
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling Bioinspired Mars Flight Vehicles for Hover.
    Pohly JA; Kang CK; Sridhar MK; Landrum DB; Fahimi F; Mesmer B; Bluman JE; Aono H; Lee T
    AIAA Atmos Flight Mech Conf 2019 (2019); 2019 Jan; 2019():. PubMed ID: 35072170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wing flexibility reduces the energetic requirements of insect flight.
    Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M
    Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial distribution of campaniform sensilla mechanosensors on wings: form, function, and phylogeny.
    Aiello BR; Stanchak KE; Weber AI; Deora T; Sponberg S; Brunton BW
    Curr Opin Insect Sci; 2021 Dec; 48():8-17. PubMed ID: 34175464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wing-kinematics measurement and flight modelling of the bamboo weevil
    Li X; Guo C
    IET Nanobiotechnol; 2020 Feb; 14(1):53-58. PubMed ID: 31935678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Should friction losses be included in an electromechanical model of a bioinspired flapping-wing micro aerial vehicle to estimate the flight energetic requirements?
    Park M; Ventikos Y; Abolfathi A
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of the hovering efficiency of flapping and revolving wings.
    Zheng L; Hedrick T; Mittal R
    Bioinspir Biomim; 2013 Sep; 8(3):036001. PubMed ID: 23680659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 13. Aerodynamic analysis of hummingbird-like hovering flight.
    Haider N; Shahzad A; Qadri MNM; Shams TA
    Bioinspir Biomim; 2021 Oct; 16(6):. PubMed ID: 34547732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design optimization and wind tunnel investigation of a flapping system based on the flapping wing trajectories of a beetle's hindwings.
    Liu C; Li P; Song F; Stamhuis EJ; Sun J
    Comput Biol Med; 2022 Jan; 140():105085. PubMed ID: 34864303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number.
    Li H; Guo S
    R Soc Open Sci; 2018 Mar; 5(3):171307. PubMed ID: 29657749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment.
    McCain JL; Pohly JA; Sridhar MK; Kang CK; Landrum DB; Aono H
    Appl Aerodyn (2020); 2020 Jan; 2020():. PubMed ID: 35072172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable Vibration Sensor for Measuring the Wing Flapping of Insects.
    Yanagisawa R; Shigaki S; Yasui K; Owaki D; Sugimoto Y; Ishiguro A; Shimizu M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33467684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement.
    Harne RL; Wang KW
    J R Soc Interface; 2015 Mar; 12(104):20141367. PubMed ID: 25608517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.