These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36412715)

  • 1. How Non-Uniform Stiffness Affects the Propulsion Performance of a Biomimetic Robotic Fish.
    Zheng C; Ding J; Dong B; Lian G; He K; Xie F
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Propulsion System for a Thunniform Robotic Fish.
    Mitin I; Korotaev R; Ermolaev A; Mironov V; Lobov SA; Kazantsev VB
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36546915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model.
    Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV
    Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thrust Improvement of a Biomimetic Robotic Fish by Using a Deformable Caudal Fin.
    Shao H; Dong B; Zheng C; Li T; Zuo Q; Xu Y; Fang H; He K; Xie F
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 35997433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OpenFish: Biomimetic design of a soft robotic fish for high speed locomotion.
    van den Berg SC; Scharff RBN; Rusák Z; Wu J
    HardwareX; 2022 Oct; 12():e00320. PubMed ID: 35694325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of variable stiffness of tuna-like fish body and fin on swimming performance.
    Luo Y; Xiao Q; Shi G; Pan G; Chen D
    Bioinspir Biomim; 2020 Nov; 16(1):016003. PubMed ID: 33164914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tail-stiffness optimization for a flexible robotic fish.
    Zou Q; Zhou C; Lu B; Liao X; Zhang Z
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35896103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of swimming performance for a biomimetic multi-joint robotic fish with a compliant passive joint.
    Chen D; Wu Z; Dong H; Tan M; Yu J
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33105126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the caudal peduncle in a fish-inspired robotic model: how changing stiffness and angle of attack affects swimming performance.
    Matthews DG; Zhu R; Wang J; Dong H; Bart-Smith H; Lauder G
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36206750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model.
    Wolf Z; Jusufi A; Vogt DM; Lauder GV
    Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of High-Performance Soft Robotic Fish by Numerical Coupling Analysis.
    Zhao W; Ming A; Shimojo M
    Appl Bionics Biomech; 2018; 2018():5697408. PubMed ID: 30598697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fin Ray Stiffness and Fin Morphology Control Ribbon-Fin-Based Propulsion.
    Liu H; Taylor B; Curet OM
    Soft Robot; 2017 Jun; 4(2):103-116. PubMed ID: 29182095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling the functional roles of morphology and motion in the swimming of fish.
    Tytell ED; Borazjani I; Sotiropoulos F; Baker TV; Anderson EJ; Lauder GV
    Integr Comp Biol; 2010 Dec; 50(6):1140-54. PubMed ID: 21082068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trout-like multifunctional piezoelectric robotic fish and energy harvester.
    Tan D; Wang YC; Kohtanen E; Erturk A
    Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.