BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36413017)

  • 21. Investigating the Relationship between CRISPR-Cas Content and Growth Rate in Bacteria.
    Liu ZL; Hu EZ; Niu DK
    Microbiol Spectr; 2023 Jun; 11(3):e0340922. PubMed ID: 37022199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types.
    Payne LJ; Todeschini TC; Wu Y; Perry BJ; Ronson CW; Fineran PC; Nobrega FL; Jackson SA
    Nucleic Acids Res; 2021 Nov; 49(19):10868-10878. PubMed ID: 34606606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems.
    Gebhardt CM; Niopek D
    Methods Mol Biol; 2024; 2774():205-231. PubMed ID: 38441767
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interrogating two extensively self-targeting Type I CRISPR-Cas systems in Xanthomonas albilineans reveals distinct anti-CRISPR proteins that block DNA degradation.
    Wimmer F; Englert F; Wandera KG; Alkhnbashi OS; Collins SP; Backofen R; Beisel CL
    Nucleic Acids Res; 2024 Jan; 52(2):769-783. PubMed ID: 38015466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Widespread RNA-based cas regulation monitors crRNA abundance and anti-CRISPR proteins.
    Liu C; Wang R; Li J; Cheng F; Shu X; Zhao H; Xue Q; Yu H; Wu A; Wang L; Hu S; Zhang Y; Yang J; Xiang H; Li M
    Cell Host Microbe; 2023 Sep; 31(9):1481-1493.e6. PubMed ID: 37659410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of AcrVIA2 and its binding mechanism to CRISPR-Cas13a.
    Song G; Li X; Wang Z; Dong C; Xie X; Yan X
    Biochem Biophys Res Commun; 2022 Jul; 612():84-90. PubMed ID: 35512461
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cas9 degradation in human cells using phage anti-CRISPR proteins.
    Meacham Z; de Tacca LA; Bondy-Denomy J; Rabuka D; Schelle M
    PLoS Biol; 2023 Dec; 21(12):e3002431. PubMed ID: 38064533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional metagenomics-guided discovery of potent Cas9 inhibitors in the human microbiome.
    Forsberg KJ; Bhatt IV; Schmidtke DT; Javanmardi K; Dillard KE; Stoddard BL; Finkelstein IJ; Kaiser BK; Malik HS
    Elife; 2019 Sep; 8():. PubMed ID: 31502535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Core defense hotspots within Pseudomonas aeruginosa are a consistent and rich source of anti-phage defense systems.
    Johnson MC; Laderman E; Huiting E; Zhang C; Davidson A; Bondy-Denomy J
    Nucleic Acids Res; 2023 Jun; 51(10):4995-5005. PubMed ID: 37140042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene Digital Circuits Based on CRISPR-Cas Systems and Anti-CRISPR Proteins.
    Yu L; Zhang Y; Marchisio MA
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36342156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tentaclins-A Novel Family of Phage Receptor-Binding Proteins That Can Be Hypermutated by DGR Systems.
    Baykov IK; Tikunov AY; Babkin IV; Fedorets VA; Zhirakovskaia EV; Tikunova NV
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome.
    Vassallo CN; Doering CR; Littlehale ML; Teodoro GIC; Laub MT
    Nat Microbiol; 2022 Oct; 7(10):1568-1579. PubMed ID: 36123438
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A conserved signaling pathway activates bacterial CBASS immune signaling in response to DNA damage.
    Lau RK; Enustun E; Gu Y; Nguyen JV; Corbett KD
    EMBO J; 2022 Nov; 41(22):e111540. PubMed ID: 36156805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery of multi-operon colinear syntenic blocks in microbial genomes.
    Svetlitsky D; Dagan T; Ziv-Ukelson M
    Bioinformatics; 2020 Jul; 36(Suppl_1):i21-i29. PubMed ID: 32657415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host translation machinery is not a barrier to phages that interact with both CPR and non-CPR bacteria.
    Liu J; Jaffe AL; Chen L; Bor B; Banfield JF
    mBio; 2023 Nov; 14(6):e0176623. PubMed ID: 38009957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The basis of antigenic operon fragmentation in
    Bank NC; Singh V; Grubb B; McCourt B; Burberry A; Roberts KD; Rodriguez-Palacios A
    bioRxiv; 2023 Jun; ():. PubMed ID: 37398285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mining the hidden treasures from canid genomes.
    Zhao F
    Natl Sci Rev; 2019 Jan; 6(1):124. PubMed ID: 34691838
    [No Abstract]   [Full Text] [Related]  

  • 38. Genome mining for anti-CRISPR operons using machine learning.
    Yang B; Khatri M; Zheng J; Deogun J; Yin Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37158576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Silico Approaches for Prediction of Anti-CRISPR Proteins.
    Makarova KS; Wolf YI; Koonin EV
    J Mol Biol; 2023 Apr; 435(7):168036. PubMed ID: 36868398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. dbAPIS: a database of anti-prokaryotic immune system genes.
    Yan Y; Zheng J; Zhang X; Yin Y
    Nucleic Acids Res; 2024 Jan; 52(D1):D419-D425. PubMed ID: 37889074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.