These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36413068)

  • 1. PScL-2LSAESM: bioimage-based prediction of protein subcellular localization by integrating heterogeneous features with the two-level SAE-SM and mean ensemble method.
    Ullah M; Hadi F; Song J; Yu DJ
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36413068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PScL-DDCFPred: an ensemble deep learning-based approach for characterizing multiclass subcellular localization of human proteins from bioimage data.
    Ullah M; Hadi F; Song J; Yu DJ
    Bioinformatics; 2022 Aug; 38(16):4019-4026. PubMed ID: 35771606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PScL-HDeep: image-based prediction of protein subcellular location in human tissue using ensemble learning of handcrafted and deep learned features with two-layer feature selection.
    Ullah M; Han K; Hadi F; Xu J; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34337652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Effective Multi-Label Protein Sub-Chloroplast Localization Prediction by Skipped-Grams of Evolutionary Profiles Using Deep Neural Network.
    Bankapur S; Patil N
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1449-1458. PubMed ID: 33175683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.
    Hu J; Han K; Li Y; Yang JY; Shen HB; Yu DJ
    Amino Acids; 2016 Nov; 48(11):2533-2547. PubMed ID: 27299433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins.
    Özsarı G; Rifaioglu AS; Atakan A; Doğan T; Martin MJ; Çetin Atalay R; Atalay V
    Bioinformatics; 2022 Sep; 38(17):4226-4229. PubMed ID: 35801913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSCL: predicting protein subcellular localization based on optimal functional domains.
    Wang K; Hu LL; Shi XH; Dong YS; Li HP; Wen TQ
    Protein Pept Lett; 2012 Jan; 19(1):15-22. PubMed ID: 21919864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate.
    Huang J; Yang S; Li J; Oh J; Kang H
    J Supercomput; 2023; 79(4):4412-4435. PubMed ID: 36188335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier.
    Cao Z; Pan X; Yang Y; Huang Y; Shen HB
    Bioinformatics; 2018 Jul; 34(13):2185-2194. PubMed ID: 29462250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of potential small molecule-miRNA associations based on heterogeneous network representation learning.
    Li J; Lin H; Wang Y; Li Z; Wu B
    Front Genet; 2022; 13():1079053. PubMed ID: 36531225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SubCons: a new ensemble method for improved human subcellular localization predictions.
    Salvatore M; Warholm P; Shu N; Basile W; Elofsson A
    Bioinformatics; 2017 Aug; 33(16):2464-2470. PubMed ID: 28407043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of protein subcellular localization.
    Yu CS; Chen YC; Lu CH; Hwang JK
    Proteins; 2006 Aug; 64(3):643-51. PubMed ID: 16752418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction.
    Xu YY; Yang F; Shen HB
    Bioinformatics; 2016 Jul; 32(14):2184-92. PubMed ID: 27153655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. deepNF: deep network fusion for protein function prediction.
    Gligorijevic V; Barot M; Bonneau R
    Bioinformatics; 2018 Nov; 34(22):3873-3881. PubMed ID: 29868758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimalist ensemble algorithms for genome-wide protein localization prediction.
    Lin JR; Mondal AM; Liu R; Hu J
    BMC Bioinformatics; 2012 Jul; 13():157. PubMed ID: 22759391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LncLocation: Efficient Subcellular Location Prediction of Long Non-Coding RNA-Based Multi-Source Heterogeneous Feature Fusion.
    Feng S; Liang Y; Du W; Lv W; Li Y
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33019721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.