BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36413210)

  • 1. Structure of human phagocyte NADPH oxidase in the resting state.
    Liu R; Song K; Wu JX; Geng XP; Zheng L; Gao X; Peng H; Chen L
    Elife; 2022 Nov; 11():. PubMed ID: 36413210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of human phagocyte NADPH oxidase in the activated state.
    Liu X; Shi Y; Liu R; Song K; Chen L
    Nature; 2024 Mar; 627(8002):189-195. PubMed ID: 38355798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of putative second transmembrane region of Nox2 protein in the structural stability and electron transfer of the phagocytic NADPH oxidase.
    Picciocchi A; Debeurme F; Beaumel S; Dagher MC; Grunwald D; Jesaitis AJ; Stasia MJ
    J Biol Chem; 2011 Aug; 286(32):28357-69. PubMed ID: 21659519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arachidonic acid induces direct interaction of the p67(phox)-Rac complex with the phagocyte oxidase Nox2, leading to superoxide production.
    Matono R; Miyano K; Kiyohara T; Sumimoto H
    J Biol Chem; 2014 Sep; 289(36):24874-84. PubMed ID: 25056956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Free NADPH Oxidase Activation Assays: A Triumph of Reductionism.
    Pick E
    Methods Mol Biol; 2020; 2087():325-411. PubMed ID: 31729001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for EROS binding to human phagocyte NADPH oxidase NOX2.
    Liang S; Liu A; Liu Y; Wang F; Zhou Y; Long Y; Wang T; Liu Z; Ren R; Ye RD
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2320388121. PubMed ID: 38805284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of NOX2 into a constitutive enzyme in vitro and in living cells, after its binding with a chimera of the regulatory subunits.
    Masoud R; Serfaty X; Erard M; Machillot P; Karimi G; Hudik E; Wien F; Baciou L; Houée-Levin C; Bizouarn T
    Free Radic Biol Med; 2017 Dec; 113():470-477. PubMed ID: 29079525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the core human NADPH oxidase NOX2.
    Noreng S; Ota N; Sun Y; Ho H; Johnson M; Arthur CP; Schneider K; Lehoux I; Davies CW; Mortara K; Wong K; Seshasayee D; Masureel M; Payandeh J; Yi T; Koerber JT
    Nat Commun; 2022 Oct; 13(1):6079. PubMed ID: 36241643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intersecting Stories of the Phagocyte NADPH Oxidase and Chronic Granulomatous Disease.
    Nauseef WM; Clark RA
    Methods Mol Biol; 2019; 1982():3-16. PubMed ID: 31172463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.
    Nisimoto Y; Jackson HM; Ogawa H; Kawahara T; Lambeth JD
    Biochemistry; 2010 Mar; 49(11):2433-42. PubMed ID: 20163138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protein kinase A negatively regulates reactive oxygen species production by phosphorylating gp91phox/NOX2 in human neutrophils.
    Raad H; Mouawia H; Hassan H; El-Seblani M; Arabi-Derkawi R; Boussetta T; Gougerot-Pocidalo MA; Dang PM; El-Benna J
    Free Radic Biol Med; 2020 Nov; 160():19-27. PubMed ID: 32758662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative live-cell imaging and 3D modeling reveal critical functional features in the cytosolic complex of phagocyte NADPH oxidase.
    Ziegler CS; Bouchab L; Tramier M; Durand D; Fieschi F; Dupré-Crochet S; Mérola F; Nüße O; Erard M
    J Biol Chem; 2019 Mar; 294(11):3824-3836. PubMed ID: 30630949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by "peptide walking".
    Dahan I; Issaeva I; Gorzalczany Y; Sigal N; Hirshberg M; Pick E
    J Biol Chem; 2002 Mar; 277(10):8421-32. PubMed ID: 11733522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of superoxide overproduction by the D-Loop(Nox4)-Nox2 cytochrome b(558) in phagocytes-Differential sensitivity to calcium and phosphorylation events.
    Carrichon L; Picciocchi A; Debeurme F; Defendi F; Beaumel S; Jesaitis AJ; Dagher MC; Stasia MJ
    Biochim Biophys Acta; 2011 Jan; 1808(1):78-90. PubMed ID: 20708598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of NADPH oxidase activity in phagocytes: relationship between FAD/NADPH binding and oxidase complex assembly.
    Debeurme F; Picciocchi A; Dagher MC; Grunwald D; Beaumel S; Fieschi F; Stasia MJ
    J Biol Chem; 2010 Oct; 285(43):33197-33208. PubMed ID: 20724480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray structure and enzymatic study of a bacterial NADPH oxidase highlight the activation mechanism of eukaryotic NOX.
    Petit-Hartlein I; Vermot A; Thepaut M; Humm AS; Dupeux F; Dupuy J; Chaptal V; Marquez JA; Smith SME; Fieschi F
    Elife; 2024 Apr; 13():. PubMed ID: 38640072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits.
    Yu L; Zhen L; Dinauer MC
    J Biol Chem; 1997 Oct; 272(43):27288-94. PubMed ID: 9341176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New p22-phox monoclonal antibodies: identification of a conformational probe for cytochrome b 558.
    Campion Y; Jesaitis AJ; Nguyen MV; Grichine A; Herenger Y; Baillet A; Berthier S; Morel F; Paclet MH
    J Innate Immun; 2009; 1(6):556-69. PubMed ID: 20375611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nox enzymes in immune cells.
    Nauseef WM
    Semin Immunopathol; 2008 Jul; 30(3):195-208. PubMed ID: 18449540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Synthetic Peptides for Exploring Protein-Protein Interactions in the Assembly of the NADPH Oxidase Complex.
    Pick E
    Methods Mol Biol; 2019; 1982():377-415. PubMed ID: 31172485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.