BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36413483)

  • 1. Novel Carbonyl Cathode for Green and Sustainable Aluminum Organic Batteries.
    Liu Y; Luo W; Lu S; Zhang Z; Chao Z; Fan J
    ACS Appl Mater Interfaces; 2022 Dec; 14(48):53702-53710. PubMed ID: 36413483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Dimensional and High-Crystallinity Carbonyl Cathodes Prepared by Physical Vapor Deposition for Green Aluminum Organic Batteries.
    Luo W; Liu Y; Li F; Zhang Z; Chao Z; Fan J
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37433-37441. PubMed ID: 37489932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction Mechanism between Cyano-Organic Molecular Structures and Energy Storage of Aluminum Complex Ions in Aluminum Batteries.
    Lu Y; Chen M; Wang Y; Hu Y; Wang X; Zhang W; Li Z
    Small Methods; 2023 Oct; 7(10):e2300663. PubMed ID: 37462249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries.
    Li Q; Li D; Wang H; Wang HG; Li Y; Si Z; Duan Q
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28801-28808. PubMed ID: 31313916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of triphenylphosphine organic compounds constructed with O, S, and Se in aluminum ion batteries.
    Lu Y; Wu G; Zhao X; Wang X; Zhang W; Li Z
    J Colloid Interface Sci; 2023 Dec; 651():296-303. PubMed ID: 37542904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methyl-Symmetrically Substituted Poly(3,4-Dimethylthiophene) as Cathode for Aluminum Ion Batteries.
    Li S; Wang J; Zhou M; Jiang K; Wang K
    Chemistry; 2024 Mar; 30(18):e202303892. PubMed ID: 38279783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries.
    Huang Z; Du X; Ma M; Wang S; Xie Y; Meng Y; You W; Xiong L
    ChemSusChem; 2023 May; 16(9):e202202358. PubMed ID: 36732888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework Structure with Fe-Co-Se (MIL-88A/Fe-Co@Se) as a Cathode for Aluminum Batteries.
    Wu G; Lv W; Li X; Zhang W; Li Z
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61107-61115. PubMed ID: 34919372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Insoluble Anthraquinone Dimer with Near-Plane Structure as a Cathode Material for Lithium-Ion Batteries.
    Yang J; Su H; Wang Z; Sun P; Xu Y
    ChemSusChem; 2020 May; 13(9):2436-2442. PubMed ID: 31840438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional composite of D-Ti
    Huo X; Wang X; Li Z; Liu J; Li J
    Nanoscale; 2020 Feb; 12(5):3387-3399. PubMed ID: 31984994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries.
    Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG
    J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable Hexaazatrinaphthalene-Based Planar Polymer Cathode Material for Organic Lithium-Ion Batteries.
    Sun Z; Yao H; Li J; Liu B; Lin Z; Shu M; Liu H; Zhu S; Guan S
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42603-42610. PubMed ID: 37639524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally Sustainable Aluminum-Coordinated Poly(tetrahydroxybenzoquinone) as a Promising Cathode for Sodium Ion Batteries.
    Kim HJ; Kim Y; Shim J; Jung KH; Jung MS; Kim H; Lee JC; Lee KT
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3479-3486. PubMed ID: 29298374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the Extraordinary Rate and Cycling Performance of Phenanthrenequinone in Aluminum-Complex-Ion Batteries.
    Yoo DJ; Choi JW
    J Phys Chem Lett; 2020 Mar; 11(6):2384-2392. PubMed ID: 32126165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries.
    Liu G; Xiao Y; Zhang W; Tang W; Zuo C; Zhang P; Dong S; Luo P
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33906187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aromatic Organic Small-Molecule Material with (020) Crystal Plane Activation for Wide-Temperature and 68000 Cycle Aqueous Calcium-Ion Batteries.
    Qiao F; Wang J; Yu R; Huang M; Zhang L; Yang W; Wang H; Wu J; Zhang L; Jiang Y; An Q
    ACS Nano; 2023 Nov; 17(22):23046-23056. PubMed ID: 37934487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of AlN monolayer as a prospective cathode for aluminum-ion batteries.
    He S; Li L; Qiao Y; Liu X; He S; Li Q; Guo D
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37499632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzoquinone-Pyrrole Polymers as Cost-Effective Cathodes toward Practical Organic Batteries.
    Chu J; Li G; Wang Y; Zhang X; Yang Z; Han Y; Cai T; Song Z
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25566-25575. PubMed ID: 35611969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous Calcium-Ion Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance.
    Cang R; Zhao C; Ye K; Yin J; Zhu K; Yan J; Wang G; Cao D
    ChemSusChem; 2020 Aug; 13(15):3911-3918. PubMed ID: 32427411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.