These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36413487)

  • 1. Zinc-Catalyzed Two-Electron Nickel(IV/II) Redox Couple for Multi-Electron Storage in Redox Flow Batteries.
    Mazumder MMR; Dalpati N; Pokkuluri PR; Farnum BH
    Inorg Chem; 2022 Dec; 61(48):19039-19048. PubMed ID: 36413487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling One-Electron vs Two-Electron Pathways in the Multi-Electron Redox Cycle of Nickel Diethyldithiocarbamate.
    Mazumder MMR; Burton A; Richburg CS; Saha S; Cronin B; Duin E; Farnum BH
    Inorg Chem; 2021 Sep; 60(17):13388-13399. PubMed ID: 34403586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Pyridine on the Multielectron Redox Cycle of Nickel Diethyldithiocarbamate.
    Richburg CS; Farnum BH
    Inorg Chem; 2019 Nov; 58(22):15371-15384. PubMed ID: 31682428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Solvent Coordination in the Multi-electron Redox Cycle of Nickel Diethyldithiocarbamate.
    Islam R; Blakemore K; Farnum BH
    Inorg Chem; 2024 Aug; 63(34):15851-15862. PubMed ID: 39121391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid Electrolyte Engineering Enables Safe and Wide-Temperature Redox Flow Batteries.
    Zhang L; Yu G
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):15028-15035. PubMed ID: 33914394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Graphene-Ni Foam as an Advanced Electrode for High-Performance Nonaqueous Redox Flow Batteries.
    Lee K; Lee J; Kwon KW; Park MS; Hwang JH; Kim KJ
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22502-22508. PubMed ID: 28631481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaseous Nitrogen Oxides Catholyte for Rechargeable Redox Flow Batteries.
    Zhang W; Yang X; Zhang S
    Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202216889. PubMed ID: 36592132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Engineering Catalyzed Redox Kinetics of Ni
    Tian J; Peng M; Luo M; Lan J; Zhang Y; Tan Y
    Small; 2022 May; 18(19):e2200452. PubMed ID: 35388972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Zn-Ce Redox Flow Battery with Ethaline Deep Eutectic Solvent.
    Cao X; Wang S; Xue X
    ChemSusChem; 2021 Apr; 14(7):1747-1755. PubMed ID: 33547738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity.
    Kaur S; Bera M; Santra A; Munshi S; Sterbinsky GE; Wu T; Moonshiram D; Paria S
    Inorg Chem; 2022 Sep; 61(36):14252-14266. PubMed ID: 36041064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery.
    Luo J; Hu B; Hu M; Wu W; Liu TL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204030. PubMed ID: 35523722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically Activated Nickel-Carbon Composite as Ultrastable Cathodes for Rechargeable Nickel-Zinc Batteries.
    Meng L; Lin D; Wang J; Zeng Y; Liu Y; Lu X
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14854-14861. PubMed ID: 30938148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries.
    Tracy JS; Broderick CH; Toste FD
    J Am Chem Soc; 2024 May; 146(17):11740-11755. PubMed ID: 38629752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Multielectron and High-Potential Spirobifluorene-Based Posolyte for Aqueous Redox Flow Batteries.
    Pang S; Li L; Ji Y; Wang P
    Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202410226. PubMed ID: 39032161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Universal Coulombic Efficiency Compensation Strategy for Zinc-Based Flow Batteries.
    Huang S; Li M; Song Y; Xi S; Wu C; Ang ZWJ; Wang Q
    Adv Mater; 2024 Aug; 36(33):e2406366. PubMed ID: 38870394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.
    Franks M; Gadzhieva A; Ghandhi L; Murrell D; Blake AJ; Davies ES; Lewis W; Moro F; McMaster J; Schröder M
    Inorg Chem; 2013 Jan; 52(2):660-70. PubMed ID: 23297765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand oxidations in high-spin nickel thiolate complexes and zinc analogues.
    Chohan BS; Shoner SC; Kovacs JA; Maroney MJ
    Inorg Chem; 2004 Nov; 43(24):7726-34. PubMed ID: 15554637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Stable Organo-Aluminum Analyte Enables Multielectron Storage for a Nonaqueous Redox Flow Battery.
    Arnold A; Dougherty RJ; Carr CR; Reynolds LC; Fettinger JC; Augustin A; Berben LA
    J Phys Chem Lett; 2020 Oct; 11(19):8202-8207. PubMed ID: 32897076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery.
    Yu X; Yu WA; Manthiram A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48654-48661. PubMed ID: 33064445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.