These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36413488)

  • 1. Time-Dependent Expectation Values from Integral Equations for Quantum Flux and Probability Densities.
    Schürger P; Renziehausen K; Schaupp T; Barth I; Engel V
    J Phys Chem A; 2022 Dec; 126(48):8964-8975. PubMed ID: 36413488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
    Schaupp T; Engel V
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200385. PubMed ID: 35341310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Born-Oppenheimer and non-Born-Oppenheimer contributions to time-dependent electron momenta.
    Schaupp T; Engel V
    J Chem Phys; 2020 May; 152(20):204310. PubMed ID: 32486694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent momentum expectation values from different quantum probability and flux densities.
    Schaupp T; Renziehausen K; Barth I; Engel V
    J Chem Phys; 2021 Feb; 154(6):064307. PubMed ID: 33588545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlated three-dimensional electron-nuclear motion: Adiabatic dynamics vs passage of conical intersections.
    Schaupp T; Engel V
    J Chem Phys; 2022 Feb; 156(7):074302. PubMed ID: 35183098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the calculation of time-dependent electron momenta within the Born-Oppenheimer approximation.
    Schaupp T; Engel V
    J Chem Phys; 2019 Apr; 150(16):164110. PubMed ID: 31042901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle.
    Albert J; Hader K; Engel V
    J Chem Phys; 2017 Dec; 147(24):241101. PubMed ID: 29289118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.
    Diestler DJ
    J Phys Chem A; 2012 Mar; 116(11):2728-35. PubMed ID: 22103768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.
    Gidopoulos NI; Gross EK
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130059. PubMed ID: 24516183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled electron-nuclear quantum dynamics through and around a conical intersection.
    Albert J; Hader K; Engel V
    J Chem Phys; 2017 Aug; 147(6):064302. PubMed ID: 28810792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Master equations and the theory of stochastic path integrals.
    Weber MF; Frey E
    Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probability and Flux Densities in the Center-of-Mass Frame.
    Barth I
    J Phys Chem A; 2018 Mar; 122(8):2144-2149. PubMed ID: 29364668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic and nuclear flux analysis on nonadiabatic electron transfer reaction: A view from single-configuration adiabatic born-huang representation.
    Matsuzaki R; Takatsuka K
    J Comput Chem; 2019 Jan; 40(1):148-163. PubMed ID: 30520116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and nuclear flux dynamics at a conical intersection.
    Schaupp T; Engel V
    J Chem Phys; 2019 Aug; 151(8):084309. PubMed ID: 31470720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy conserving approximations to the quantum potential: dynamics with linearized quantum force.
    Garashchuk S; Rassolov VA
    J Chem Phys; 2004 Jan; 120(3):1181-90. PubMed ID: 15268241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Quantum Dynamics: A Quantum Computing Perspective.
    Ollitrault PJ; Miessen A; Tavernelli I
    Acc Chem Res; 2021 Dec; 54(23):4229-4238. PubMed ID: 34787398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of the electronic flux density in the Born-Oppenheimer approximation.
    Diestler DJ; Kenfack A; Manz J; Paulus B; Pérez-Torres JF; Pohl V
    J Phys Chem A; 2013 Sep; 117(36):8519-27. PubMed ID: 23425513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Shannon Entropies Characterizing Electron-Nuclear Dynamics and Correlation: Momentum-Space Versus Coordinate-Space Wave Packet Motion.
    Schürger P; Engel V
    Entropy (Basel); 2023 Jun; 25(7):. PubMed ID: 37509917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.
    Diestler DJ
    J Phys Chem A; 2012 Nov; 116(46):11161-6. PubMed ID: 22775121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.