BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36413579)

  • 1. Lipid Droplets: Packing Hydrophobic Molecules Within the Aqueous Cytoplasm.
    Guzha A; Whitehead P; Ischebeck T; Chapman KD
    Annu Rev Plant Biol; 2023 May; 74():195-223. PubMed ID: 36413579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Lipid Droplets for Protein and Lipid Analysis.
    Horn PJ; Chapman KD; Ischebeck T
    Methods Mol Biol; 2021; 2295():295-320. PubMed ID: 34047983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.
    Gidda SK; Park S; Pyc M; Yurchenko O; Cai Y; Wu P; Andrews DW; Chapman KD; Dyer JM; Mullen RT
    Plant Physiol; 2016 Apr; 170(4):2052-71. PubMed ID: 26896396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The characteristics and potential applications of structural lipid droplet proteins in plants.
    Laibach N; Post J; Twyman RM; Gronover CS; Prüfer D
    J Biotechnol; 2015 May; 201():15-27. PubMed ID: 25160916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sterols are required for the coordinated assembly of lipid droplets in developing seeds.
    Yu L; Fan J; Zhou C; Xu C
    Nat Commun; 2021 Sep; 12(1):5598. PubMed ID: 34552075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells.
    Gidda SK; Watt S; Collins-Silva J; Kilaru A; Arondel V; Yurchenko O; Horn PJ; James CN; Shintani D; Ohlrogge JB; Chapman KD; Mullen RT; Dyer JM
    Plant Signal Behav; 2013 Nov; 8(11):e27141. PubMed ID: 24305619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man.
    Chapman KD; Dyer JM; Mullen RT
    J Lipid Res; 2012 Feb; 53(2):215-26. PubMed ID: 22045929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves.
    Delatte TL; Scaiola G; Molenaar J; de Sousa Farias K; Alves Gomes Albertti L; Busscher J; Verstappen F; Carollo C; Bouwmeester H; Beekwilder J
    Plant Biotechnol J; 2018 Dec; 16(12):1997-2006. PubMed ID: 29682901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turning Over a New Leaf in Lipid Droplet Biology.
    Pyc M; Cai Y; Greer MS; Yurchenko O; Chapman KD; Dyer JM; Mullen RT
    Trends Plant Sci; 2017 Jul; 22(7):596-609. PubMed ID: 28454678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring selection signatures in the divergence and evolution of lipid droplet (LD) associated genes in major oilseed crops.
    Parakkunnel R; K BN; Vanishree G; George A; Kv S; Yr A; K UB; Anandan A; Kumar S
    BMC Genomics; 2024 Jul; 25(1):653. PubMed ID: 38956471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics and functions of lipid droplets.
    Olzmann JA; Carvalho P
    Nat Rev Mol Cell Biol; 2019 Mar; 20(3):137-155. PubMed ID: 30523332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural organization of seed oil bodies could explain the contrasted oil extractability observed in two rapeseed genotypes.
    Boulard C; Bardet M; Chardot T; Dubreucq B; Gromova M; Guillermo A; Miquel M; Nesi N; Yen-Nicolaÿ S; Jolivet P
    Planta; 2015 Jul; 242(1):53-68. PubMed ID: 25820267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.
    Liu H; Wang C; Chen F; Shen S
    J Proteomics; 2015 Jan; 113():403-14. PubMed ID: 25449834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds.
    Pyc M; Cai Y; Gidda SK; Yurchenko O; Park S; Kretzschmar FK; Ischebeck T; Valerius O; Braus GH; Chapman KD; Dyer JM; Mullen RT
    Plant J; 2017 Dec; 92(6):1182-1201. PubMed ID: 29083105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational study on the structure-function relationships of plant caleosins.
    Saadat F
    Sci Rep; 2023 Jan; 13(1):72. PubMed ID: 36593238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of lipid droplet biogenesis.
    Chapman KD; Aziz M; Dyer JM; Mullen RT
    Biochem J; 2019 Jul; 476(13):1929-1942. PubMed ID: 31289128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development.
    Shao Q; Liu X; Su T; Ma C; Wang P
    Front Plant Sci; 2019; 10():1568. PubMed ID: 31921234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid droplets in plants and algae: Distribution, formation, turnover and function.
    Ischebeck T; Krawczyk HE; Mullen RT; Dyer JM; Chapman KD
    Semin Cell Dev Biol; 2020 Dec; 108():82-93. PubMed ID: 32147380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgal lipid droplets: composition, diversity, biogenesis and functions.
    Goold H; Beisson F; Peltier G; Li-Beisson Y
    Plant Cell Rep; 2015 Apr; 34(4):545-55. PubMed ID: 25433857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves.
    Shimada TL; Hayashi M; Hara-Nishimura I
    Plant Physiol; 2018 Jan; 176(1):199-207. PubMed ID: 29203559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.