BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36414062)

  • 1. Influence of fulvic acid sub-fractions on aggregation kinetics of graphene oxide in aqueous environments.
    Xia P; Zhang W; Jin Q; Si J; Guo F; Li Z; Bai Y
    Sci Total Environ; 2023 Feb; 860():160318. PubMed ID: 36414062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer.
    Bai Y; Wu F; Xing B; Meng W; Shi G; Ma Y; Giesy JP
    Sci Rep; 2015 Mar; 5():8723. PubMed ID: 25735451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2013 Jun; 47(12):6288-96. PubMed ID: 23668881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration Dependent Effects of Bovine Serum Albumin on Graphene Oxide Colloidal Stability in Aquatic Environment.
    Sun B; Zhang Y; Chen W; Wang K; Zhu L
    Environ Sci Technol; 2018 Jul; 52(13):7212-7219. PubMed ID: 29894635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of ferrihydrite nanoparticles: Effects of pH, electrolytes,and organics.
    Liu J; Louie SM; Pham C; Dai C; Liang D; Hu Y
    Environ Res; 2019 May; 172():552-560. PubMed ID: 30856401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-zone-dependent effect mechanism of humic acid and fulvic acid extracted from river sediments on aggregation behavior of graphene oxide.
    Ali J; Li Y; Wang X; Zhao J; Xi N; Zhang Z; Xia X
    Sci Total Environ; 2020 Jun; 721():137682. PubMed ID: 32171139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Oxides in Water: Correlating Morphology and Surface Chemistry with Aggregation Behavior.
    Jiang Y; Raliya R; Fortner JD; Biswas P
    Environ Sci Technol; 2016 Jul; 50(13):6964-73. PubMed ID: 27248211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aggregation morphology of planar engineered nanomaterials.
    Story SD; Boggs S; Guiney LM; Ramesh M; Hersam MC; Brinker CJ; Walker SL
    J Colloid Interface Sci; 2020 Mar; 561():849-853. PubMed ID: 31771871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Meta-Analysis to Revisit the Property-Aggregation Relationships of Carbon Nanomaterials: Experimental Observations versus Predictions of the DLVO Theory.
    Peng B; Liao P; Jiang Y
    Langmuir; 2024 Apr; 40(13):7127-7138. PubMed ID: 38512061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Functionalized Graphene Oxide Behavior in Water.
    Kim C; Lee J; Wang W; Fortner J
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32599799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal stability of nanosized activated carbon in aquatic systems: Effects of pH, electrolytes, and macromolecules.
    Shao Z; Luo S; Liang M; Ning Z; Sun W; Zhu Y; Mo J; Li Y; Huang W; Chen C
    Water Res; 2021 Sep; 203():117561. PubMed ID: 34450463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation Behavior of Inorganic 2D Nanomaterials Beyond Graphene: Insights from Molecular Modeling and Modified DLVO Theory.
    Mohona TM; Gupta A; Masud A; Chien SC; Lin LC; Nalam PC; Aich N
    Environ Sci Technol; 2019 Apr; 53(8):4161-4172. PubMed ID: 30884220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment.
    Huang G; Guo H; Zhao J; Liu Y; Xing B
    Water Res; 2016 Oct; 102():313-320. PubMed ID: 27379727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of extracellular polymeric substances on the aggregation kinetics of TiO
    Lin D; Drew Story S; Walker SL; Huang Q; Cai P
    Water Res; 2016 Nov; 104():381-388. PubMed ID: 27576157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Insight into the Aggregation of Graphene Oxide Using Molecular Dynamics Simulations and Extended Derjaguin-Landau-Verwey-Overbeek Theory.
    Tang H; Zhao Y; Yang X; Liu D; Shao P; Zhu Z; Shan S; Cui F; Xing B
    Environ Sci Technol; 2017 Sep; 51(17):9674-9682. PubMed ID: 28771343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid.
    Dong S; Cai W; Xia J; Sheng L; Wang W; Liu H
    Environ Pollut; 2021 Jan; 268(Pt B):115828. PubMed ID: 33120151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation of Colloidal Particles in the Presence of Multivalent Co-Ions: The Inverse Schulze-Hardy Rule.
    Cao T; Szilagyi I; Oncsik T; Borkovec M; Trefalt G
    Langmuir; 2015 Jun; 31(24):6610-4. PubMed ID: 26039868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling.
    Wu L; Liu L; Gao B; Muñoz-Carpena R; Zhang M; Chen H; Zhou Z; Wang H
    Langmuir; 2013 Dec; 29(49):15174-81. PubMed ID: 24261814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.
    Gudarzi MM
    Langmuir; 2016 May; 32(20):5058-68. PubMed ID: 27143102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.