These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 36414195)
21. Next-generation materials for RNA-lipid nanoparticles: lyophilization and targeted transfection. Wang T; Sung TC; Yu T; Lin HY; Chen YH; Zhu ZW; Gong J; Pan J; Higuchi A J Mater Chem B; 2023 Jun; 11(23):5083-5093. PubMed ID: 37221913 [TBL] [Abstract][Full Text] [Related]
22. Adjuvant lipidoid-substituted lipid nanoparticles augment the immunogenicity of SARS-CoV-2 mRNA vaccines. Han X; Alameh MG; Butowska K; Knox JJ; Lundgreen K; Ghattas M; Gong N; Xue L; Xu Y; Lavertu M; Bates P; Xu J; Nie G; Zhong Y; Weissman D; Mitchell MJ Nat Nanotechnol; 2023 Sep; 18(9):1105-1114. PubMed ID: 37365276 [TBL] [Abstract][Full Text] [Related]
23. Leveraging Biological Buffers for Efficient Messenger RNA Delivery via Lipid Nanoparticles. Henderson MI; Eygeris Y; Jozic A; Herrera M; Sahay G Mol Pharm; 2022 Nov; 19(11):4275-4285. PubMed ID: 36129254 [TBL] [Abstract][Full Text] [Related]
24. Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing. Qiu M; Li Y; Bloomer H; Xu Q Acc Chem Res; 2021 Nov; 54(21):4001-4011. PubMed ID: 34668716 [TBL] [Abstract][Full Text] [Related]
25. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Hald Albertsen C; Kulkarni JA; Witzigmann D; Lind M; Petersson K; Simonsen JB Adv Drug Deliv Rev; 2022 Sep; 188():114416. PubMed ID: 35787388 [TBL] [Abstract][Full Text] [Related]
26. Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in quadrivalent influenza vaccine vaccinated mice. Jangra S; Lamoot A; Singh G; Laghlali G; Chen Y; Ye T; García-Sastre A; De Geest BG; Schotsaert M Front Immunol; 2024; 15():1370564. PubMed ID: 38711520 [TBL] [Abstract][Full Text] [Related]
27. Enabling online determination of the size-dependent RNA content of lipid nanoparticle-based RNA formulations. Jia X; Liu Y; Wagner AM; Chen M; Zhao Y; Smith KJ; Some D; Abend AM; Pennington J J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Dec; 1186():123015. PubMed ID: 34741934 [TBL] [Abstract][Full Text] [Related]
28. Effect of lipid composition on RNA-Lipid nanoparticle properties and their sensitivity to thin-film freezing and drying. AboulFotouh K; Southard B; Dao HM; Xu H; Moon C; Williams Iii RO; Cui Z Int J Pharm; 2024 Jan; 650():123688. PubMed ID: 38070660 [TBL] [Abstract][Full Text] [Related]
29. The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency. Anderluzzi G; Lou G; Woods S; Schmidt ST; Gallorini S; Brazzoli M; Johnson R; Roberts CW; O'Hagan DT; Baudner BC; Perrie Y J Control Release; 2022 Feb; 342():388-399. PubMed ID: 34896446 [TBL] [Abstract][Full Text] [Related]
30. Delivery and Expression of mRNA in the Secondary Lymphoid Organs Drive Immune Responses to Lipid Nanoparticle-mRNA Vaccines after Intramuscular Injection. Takanashi A; Pouton CW; Al-Wassiti H Mol Pharm; 2023 Aug; 20(8):3876-3885. PubMed ID: 37491979 [TBL] [Abstract][Full Text] [Related]
31. STING Agonist-Derived LNP-mRNA Vaccine Enhances Protective Immunity Against SARS-CoV-2. Zhang Y; Yan J; Hou X; Wang C; Kang DD; Xue Y; Du S; Deng B; McComb DW; Liu SL; Zhong Y; Dong Y Nano Lett; 2023 Apr; 23(7):2593-2600. PubMed ID: 36942873 [TBL] [Abstract][Full Text] [Related]
32. A Basic Method for Formulating mRNA-Lipid Nanoparticle Vaccines in the Lab. Jarzebska NT; Frei J; Mellett M; Kündig TM; Pascolo S; Reichmuth AM Methods Mol Biol; 2024; 2786():237-254. PubMed ID: 38814398 [TBL] [Abstract][Full Text] [Related]
33. Cryoprotectant optimization for enhanced stability and transfection efficiency of pDNA-loaded ionizable lipid nanoparticles. Athaydes Seabra Ferreira H; Ricardo Aluotto Scalzo Júnior S; Kelton Santos de Faria K; Henrique Costa Silva G; Túllio Rodrigues Alves M; Oliveira Lobo A; Pires Goulart Guimarães P Int J Pharm; 2024 Nov; 665():124696. PubMed ID: 39265853 [TBL] [Abstract][Full Text] [Related]
34. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines. Li Z; Zhang XQ; Ho W; Li F; Gao M; Bai X; Xu X ACS Nano; 2022 Nov; 16(11):18936-18950. PubMed ID: 36269150 [TBL] [Abstract][Full Text] [Related]
35. Modulating Lipid Nanoparticles with Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA. Jung O; Jung HY; Thuy LT; Choi M; Kim S; Jeon HG; Yang J; Kim SM; Kim TD; Lee E; Kim Y; Choi JS Adv Healthc Mater; 2024 Jun; 13(14):e2303857. PubMed ID: 38344923 [TBL] [Abstract][Full Text] [Related]
36. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications. Wang C; Zhang Y; Dong Y Acc Chem Res; 2021 Dec; 54(23):4283-4293. PubMed ID: 34793124 [TBL] [Abstract][Full Text] [Related]
37. Long-term stability and immunogenicity of lipid nanoparticle COVID-19 mRNA vaccine is affected by particle size. Shi R; Liu X; Wang Y; Pan M; Wang S; Shi L; Ni B Hum Vaccin Immunother; 2024 Dec; 20(1):2342592. PubMed ID: 38714327 [TBL] [Abstract][Full Text] [Related]
38. Elucidation of lipid nanoparticle surface structure in mRNA vaccines. Wang MM; Wappelhorst CN; Jensen EL; Chi YT; Rouse JC; Zou Q Sci Rep; 2023 Oct; 13(1):16744. PubMed ID: 37798336 [TBL] [Abstract][Full Text] [Related]
39. Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology. Ottonelli I; Adani E; Bighinati A; Cuoghi S; Tosi G; Vandelli MA; Ruozi B; Marigo V; Duskey JT Int J Nanomedicine; 2024; 19():4235-4251. PubMed ID: 38766661 [TBL] [Abstract][Full Text] [Related]
40. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. Sun M; Dang UJ; Yuan Y; Psaras AM; Osipitan O; Brooks TA; Lu F; Di Pasqua AJ AAPS PharmSciTech; 2022 May; 23(5):135. PubMed ID: 35534697 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]